Record Information |
---|
Version | 2.0 |
---|
Created at | 2022-09-04 21:55:30 UTC |
---|
Updated at | 2022-09-04 21:55:30 UTC |
---|
NP-MRD ID | NP0202665 |
---|
Secondary Accession Numbers | None |
---|
Natural Product Identification |
---|
Common Name | (2e,4e,6e)-7-[(1r,2s,6s)-4-{[(2e,4e,6e)-7-cyclohexyl-1-hydroxyhepta-2,4,6-trien-1-ylidene]amino}-2-hydroxy-5-oxo-7-oxabicyclo[4.1.0]hept-3-en-2-yl]-n-(2-hydroxy-5-oxocyclopent-1-en-1-yl)hepta-2,4,6-trienimidic acid |
---|
Description | Asukamycin, also known as AM 1042, belongs to the class of organic compounds known as cyclohexenones. Cyclohexenones are compounds containing a cylohexenone moiety, which is a six-membered aliphatic ring that carries a ketone and has one endocyclic double bond. Thus, asukamycin is considered to be a fatty amide. Asukamycin is a secondary metabolite. Secondary metabolites are metabolically or physiologically non-essential metabolites that may serve a role as defense or signalling molecules. In some cases they are simply molecules that arise from the incomplete metabolism of other secondary metabolites. (2e,4e,6e)-7-[(1r,2s,6s)-4-{[(2e,4e,6e)-7-cyclohexyl-1-hydroxyhepta-2,4,6-trien-1-ylidene]amino}-2-hydroxy-5-oxo-7-oxabicyclo[4.1.0]hept-3-en-2-yl]-n-(2-hydroxy-5-oxocyclopent-1-en-1-yl)hepta-2,4,6-trienimidic acid is found in Apis cerana, Streptomyces nodosus and Streptomyces nodosus. (2e,4e,6e)-7-[(1r,2s,6s)-4-{[(2e,4e,6e)-7-cyclohexyl-1-hydroxyhepta-2,4,6-trien-1-ylidene]amino}-2-hydroxy-5-oxo-7-oxabicyclo[4.1.0]hept-3-en-2-yl]-n-(2-hydroxy-5-oxocyclopent-1-en-1-yl)hepta-2,4,6-trienimidic acid was first documented in 1986 (PMID: 3553432). Based on a literature review a significant number of articles have been published on asukamycin (PMID: 24838618) (PMID: 32344935) (PMID: 35218125) (PMID: 30696899) (PMID: 20522559) (PMID: 23995809). |
---|
Structure | OC(\C=C\C=C\C=C\[C@]1(O)C=C(N=C(O)\C=C\C=C\C=C\C2CCCCC2)C(=O)[C@H]2O[C@@H]12)=NC1=C(O)CCC1=O InChI=1S/C31H34N2O7/c34-23-17-18-24(35)27(23)33-26(37)16-10-3-4-11-19-31(39)20-22(28(38)29-30(31)40-29)32-25(36)15-9-2-1-6-12-21-13-7-5-8-14-21/h1-4,6,9-12,15-16,19-21,29-30,34,39H,5,7-8,13-14,17-18H2,(H,32,36)(H,33,37)/b2-1+,4-3+,12-6+,15-9+,16-10+,19-11+/t29-,30-,31+/m1/s1 |
---|
Synonyms | Value | Source |
---|
AM 1042 | ChEBI | Asukamycin a1 | ChEBI |
|
---|
Chemical Formula | C31H34N2O7 |
---|
Average Mass | 546.6200 Da |
---|
Monoisotopic Mass | 546.23660 Da |
---|
IUPAC Name | (2E,4E,6E)-7-[(1R,2S,6S)-4-{[(2E,4E,6E)-7-cyclohexyl-1-hydroxyhepta-2,4,6-trien-1-ylidene]amino}-2-hydroxy-5-oxo-7-oxabicyclo[4.1.0]hept-3-en-2-yl]-N-(2-hydroxy-5-oxocyclopent-1-en-1-yl)hepta-2,4,6-trienimidic acid |
---|
Traditional Name | asukamycin |
---|
CAS Registry Number | Not Available |
---|
SMILES | OC(\C=C\C=C\C=C\[C@]1(O)C=C(N=C(O)\C=C\C=C\C=C\C2CCCCC2)C(=O)[C@H]2O[C@@H]12)=NC1=C(O)CCC1=O |
---|
InChI Identifier | InChI=1S/C31H34N2O7/c34-23-17-18-24(35)27(23)33-26(37)16-10-3-4-11-19-31(39)20-22(28(38)29-30(31)40-29)32-25(36)15-9-2-1-6-12-21-13-7-5-8-14-21/h1-4,6,9-12,15-16,19-21,29-30,34,39H,5,7-8,13-14,17-18H2,(H,32,36)(H,33,37)/b2-1+,4-3+,12-6+,15-9+,16-10+,19-11+/t29-,30-,31+/m1/s1 |
---|
InChI Key | SSHVAUUEPNULMP-JHWDTTIQSA-N |
---|
Experimental Spectra |
---|
|
| Not Available | Predicted Spectra |
---|
|
| Spectrum Type | Description | Depositor ID | Depositor Organization | Depositor | Deposition Date | View |
---|
1D NMR | 13C NMR Spectrum (1D, 25 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 100 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 252 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 1000 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 50 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 200 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 75 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 300 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 101 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 400 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 126 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 500 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 151 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 600 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 176 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 700 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 201 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 800 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 226 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 900 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum |
| Chemical Shift Submissions |
---|
|
| Not Available | Species |
---|
Species of Origin | |
---|
Chemical Taxonomy |
---|
Description | Belongs to the class of organic compounds known as cyclohexenones. Cyclohexenones are compounds containing a cylohexenone moiety, which is a six-membered aliphatic ring that carries a ketone and has one endocyclic double bond. |
---|
Kingdom | Organic compounds |
---|
Super Class | Organic oxygen compounds |
---|
Class | Organooxygen compounds |
---|
Sub Class | Carbonyl compounds |
---|
Direct Parent | Cyclohexenones |
---|
Alternative Parents | |
---|
Substituents | - Cyclohexenone
- N-acyl-amine
- Tertiary alcohol
- Vinylogous acid
- Carboxamide group
- Secondary carboxylic acid amide
- Carboxylic acid derivative
- Dialkyl ether
- Oxirane
- Ether
- Oxacycle
- Organoheterocyclic compound
- Alcohol
- Organopnictogen compound
- Organonitrogen compound
- Organic oxide
- Hydrocarbon derivative
- Organic nitrogen compound
- Aliphatic heteropolycyclic compound
|
---|
Molecular Framework | Aliphatic heteropolycyclic compounds |
---|
External Descriptors | |
---|
Physical Properties |
---|
State | Not Available |
---|
Experimental Properties | Property | Value | Reference |
---|
Melting Point | Not Available | Not Available | Boiling Point | Not Available | Not Available | Water Solubility | Not Available | Not Available | LogP | Not Available | Not Available |
|
---|
Predicted Properties | |
---|
General References | - Petrickova K, Pospisil S, Kuzma M, Tylova T, Jagr M, Tomek P, Chronakova A, Brabcova E, Andera L, Kristufek V, Petricek M: Biosynthesis of colabomycin E, a new manumycin-family metabolite, involves an unusual chain-length factor. Chembiochem. 2014 Jun 16;15(9):1334-45. doi: 10.1002/cbic.201400068. Epub 2014 May 18. [PubMed:24838618 ]
- Hrdy J, Sukenikova L, Petraskova P, Novotna O, Kahoun D, Petricek M, Chronakova A, Petrickova K: Inhibition of Pro-Inflammatory Cytokines by Metabolites of Streptomycetes-A Potential Alternative to Current Anti-Inflammatory Drugs? Microorganisms. 2020 Apr 25;8(5). pii: microorganisms8050621. doi: 10.3390/microorganisms8050621. [PubMed:32344935 ]
- Yan X, Zhang J, Tan H, Liu Z, Jiang K, Tian W, Zheng M, Lin Z, Deng Z, Qu X: A Pair of Atypical KAS III Homologues with Initiation and Elongation Functions Program the Polyketide Biosynthesis in Asukamycin. Angew Chem Int Ed Engl. 2022 May 2;61(19):e202200879. doi: 10.1002/anie.202200879. Epub 2022 Mar 10. [PubMed:35218125 ]
- Hu D, Gao C, Sun C, Jin T, Fan G, Mok KM, Lee SM: Genome-guided and mass spectrometry investigation of natural products produced by a potential new actinobacterial strain isolated from a mangrove ecosystem in Futian, Shenzhen, China. Sci Rep. 2019 Jan 29;9(1):823. doi: 10.1038/s41598-018-37475-w. [PubMed:30696899 ]
- Rui Z, Petrickova K, Skanta F, Pospisil S, Yang Y, Chen CY, Tsai SF, Floss HG, Petricek M, Yu TW: Biochemical and genetic insights into asukamycin biosynthesis. J Biol Chem. 2010 Aug 6;285(32):24915-24. doi: 10.1074/jbc.M110.128850. Epub 2010 Jun 3. [PubMed:20522559 ]
- Ito T: [Biosynthetic study of actinomycetes-metabolites for creating novel analogs]. Yakugaku Zasshi. 2013;133(9):1007-15. doi: 10.1248/yakushi.13-00175. [PubMed:23995809 ]
- Rui Z, Sandy M, Jung B, Zhang W: Tandem enzymatic oxygenations in biosynthesis of epoxyquinone pharmacophore of manumycin-type metabolites. Chem Biol. 2013 Jul 25;20(7):879-87. doi: 10.1016/j.chembiol.2013.05.006. [PubMed:23890006 ]
- Bai L: Tandem modifications of an epoxyquinone C7N pharmacophore. Chem Biol. 2013 Jul 25;20(7):859-60. doi: 10.1016/j.chembiol.2013.07.003. [PubMed:23890003 ]
- Xie P, Sheng Y, Ito T, Mahmud T: Transcriptional regulation and increased production of asukamycin in engineered Streptomyces nodosus subsp. asukaensis strains. Appl Microbiol Biotechnol. 2012 Oct;96(2):451-60. doi: 10.1007/s00253-012-4084-2. Epub 2012 May 5. [PubMed:22555913 ]
- Pospisil S, Petrickova K, Sedmera P, Halada P, Olsovska J, Petricek M: Effect of starter unit availability on the spectrum of manumycin-type metabolites produced by Streptomyces nodosus ssp. asukaensis. J Appl Microbiol. 2011 Nov;111(5):1116-28. doi: 10.1111/j.1365-2672.2011.05132.x. Epub 2011 Sep 8. [PubMed:21854515 ]
- Shipley PR, Donnelly CC, Le CH, Bernauer AD, Klegeris A: Antitumor activity of asukamycin, a secondary metabolite from the actinomycete bacterium Streptomyces nodosus subspecies asukaensis. Int J Mol Med. 2009 Nov;24(5):711-5. doi: 10.3892/ijmm_00000283. [PubMed:19787206 ]
- Petricek M, Petrickova K, Havlicek L, Felsberg J: Occurrence of two 5-aminolevulinate biosynthetic pathways in Streptomyces nodosus subsp. asukaensis is linked with the production of asukamycin. J Bacteriol. 2006 Jul;188(14):5113-23. doi: 10.1128/JB.01919-05. [PubMed:16816183 ]
- Hu Y, Floss HG: Further studies on the biosynthesis of the manumycin-type antibiotic, asukamycin, and the chemical synthesis of protoasukamycin. J Am Chem Soc. 2004 Mar 31;126(12):3837-44. doi: 10.1021/ja039336+. [PubMed:15038738 ]
- Floss HG, Keller PJ, Beale JM: Studies on the biosynthesis of antibiotics. J Nat Prod. 1986 Nov-Dec;49(6):957-70. doi: 10.1021/np50048a001. [PubMed:3553432 ]
- LOTUS database [Link]
|
---|