| Record Information |
|---|
| Version | 2.0 |
|---|
| Created at | 2022-09-04 15:40:47 UTC |
|---|
| Updated at | 2022-09-04 15:40:47 UTC |
|---|
| NP-MRD ID | NP0197420 |
|---|
| Secondary Accession Numbers | None |
|---|
| Natural Product Identification |
|---|
| Common Name | (1s,4e,5'r,6r,6'r,7s,8r,10s,11s,12r,14s,15r,16s,18e,20e,22s,25r,27s,28r,29s)-22-ethyl-7,11,14,15-tetrahydroxy-6'-[(2s)-2-hydroxypropyl]-5',6,8,10,12,14,16,28,29-nonamethyl-2,26-dioxaspiro[bicyclo[23.3.1]nonacosane-27,2'-oxane]-4,18,20-triene-3,9,13-trione |
|---|
| Description | Oligomycin A belongs to the class of organic compounds known as macrolides and analogues. These are organic compounds containing a lactone ring of at least twelve members. (1s,4e,5'r,6r,6'r,7s,8r,10s,11s,12r,14s,15r,16s,18e,20e,22s,25r,27s,28r,29s)-22-ethyl-7,11,14,15-tetrahydroxy-6'-[(2s)-2-hydroxypropyl]-5',6,8,10,12,14,16,28,29-nonamethyl-2,26-dioxaspiro[bicyclo[23.3.1]nonacosane-27,2'-oxane]-4,18,20-triene-3,9,13-trione is found in Streptomyces albidoflavus, Streptomyces avermitilis, Streptomyces coelicolor, Streptomyces diastaticus, Streptomyces diastatochromogenes, Streptomyces griseolus and Streptomyces libani. (1s,4e,5'r,6r,6'r,7s,8r,10s,11s,12r,14s,15r,16s,18e,20e,22s,25r,27s,28r,29s)-22-ethyl-7,11,14,15-tetrahydroxy-6'-[(2s)-2-hydroxypropyl]-5',6,8,10,12,14,16,28,29-nonamethyl-2,26-dioxaspiro[bicyclo[23.3.1]nonacosane-27,2'-oxane]-4,18,20-triene-3,9,13-trione was first documented in 2021 (PMID: 34043357). Based on a literature review a significant number of articles have been published on oligomycin A (PMID: 33993959) (PMID: 33951287) (PMID: 33918382) (PMID: 33872751) (PMID: 36032127) (PMID: 35964468). |
|---|
| Structure | CC[C@H]1CC[C@H]2O[C@@]3(CC[C@@H](C)[C@@H](C[C@H](C)O)O3)[C@H](C)[C@@H](OC(=O)\C=C\[C@@H](C)[C@H](O)[C@@H](C)C(=O)[C@@H](C)[C@H](O)[C@@H](C)C(=O)[C@@](C)(O)[C@H](O)[C@@H](C)C\C=C\C=C\1)[C@H]2C InChI=1S/C45H74O11/c1-12-34-17-15-13-14-16-27(4)42(51)44(11,53)43(52)32(9)40(50)31(8)39(49)30(7)38(48)26(3)18-21-37(47)54-41-29(6)35(20-19-34)55-45(33(41)10)23-22-25(2)36(56-45)24-28(5)46/h13-15,17-18,21,25-36,38,40-42,46,48,50-51,53H,12,16,19-20,22-24H2,1-11H3/b14-13+,17-15+,21-18+/t25-,26-,27+,28+,29+,30-,31-,32-,33-,34-,35-,36-,38+,40+,41+,42-,44+,45-/m1/s1 |
|---|
| Synonyms | Not Available |
|---|
| Chemical Formula | C45H74O11 |
|---|
| Average Mass | 791.0760 Da |
|---|
| Monoisotopic Mass | 790.52311 Da |
|---|
| IUPAC Name | (1S,4E,5'R,6R,6'R,7S,8R,10S,11S,12R,14S,15R,16S,18E,20E,22S,25R,27S,28R,29S)-22-ethyl-7,11,14,15-tetrahydroxy-6'-[(2S)-2-hydroxypropyl]-5',6,8,10,12,14,16,28,29-nonamethyl-2,26-dioxaspiro[bicyclo[23.3.1]nonacosane-27,2'-oxane]-4,18,20-triene-3,9,13-trione |
|---|
| Traditional Name | oligomycin A |
|---|
| CAS Registry Number | Not Available |
|---|
| SMILES | CC[C@H]1CC[C@H]2O[C@@]3(CC[C@@H](C)[C@@H](C[C@H](C)O)O3)[C@H](C)[C@@H](OC(=O)\C=C\[C@@H](C)[C@H](O)[C@@H](C)C(=O)[C@@H](C)[C@H](O)[C@@H](C)C(=O)[C@@](C)(O)[C@H](O)[C@@H](C)C\C=C\C=C\1)[C@H]2C |
|---|
| InChI Identifier | InChI=1S/C45H74O11/c1-12-34-17-15-13-14-16-27(4)42(51)44(11,53)43(52)32(9)40(50)31(8)39(49)30(7)38(48)26(3)18-21-37(47)54-41-29(6)35(20-19-34)55-45(33(41)10)23-22-25(2)36(56-45)24-28(5)46/h13-15,17-18,21,25-36,38,40-42,46,48,50-51,53H,12,16,19-20,22-24H2,1-11H3/b14-13+,17-15+,21-18+/t25-,26-,27+,28+,29+,30-,31-,32-,33-,34-,35-,36-,38+,40+,41+,42-,44+,45-/m1/s1 |
|---|
| InChI Key | MNULEGDCPYONBU-WMBHJXFZSA-N |
|---|
| Experimental Spectra |
|---|
|
| Not Available | | Predicted Spectra |
|---|
|
| | Spectrum Type | Description | Depositor ID | Depositor Organization | Depositor | Deposition Date | View |
|---|
| 1D NMR | 13C NMR Spectrum (1D, 25 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 100 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 252 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 1000 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 50 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 200 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 75 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 300 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 101 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 400 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 126 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 500 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 151 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 600 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 176 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 700 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 201 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 800 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 226 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 900 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum |
| | Chemical Shift Submissions |
|---|
|
| Not Available | | Species |
|---|
| Species of Origin | |
|---|
| Chemical Taxonomy |
|---|
| Description | Belongs to the class of organic compounds known as macrolides and analogues. These are organic compounds containing a lactone ring of at least twelve members. |
|---|
| Kingdom | Organic compounds |
|---|
| Super Class | Phenylpropanoids and polyketides |
|---|
| Class | Macrolides and analogues |
|---|
| Sub Class | Not Available |
|---|
| Direct Parent | Macrolides and analogues |
|---|
| Alternative Parents | |
|---|
| Substituents | - Macrolide
- Ketal
- Acyloin
- Oxane
- Tertiary alcohol
- Enoate ester
- Alpha,beta-unsaturated carboxylic ester
- Cyclic ketone
- Secondary alcohol
- Carboxylic acid ester
- Lactone
- Ketone
- Oxacycle
- Acetal
- Polyol
- Organoheterocyclic compound
- Carboxylic acid derivative
- Monocarboxylic acid or derivatives
- Organic oxygen compound
- Organic oxide
- Organooxygen compound
- Carbonyl group
- Aldehyde
- Alcohol
- Hydrocarbon derivative
- Aliphatic heteropolycyclic compound
|
|---|
| Molecular Framework | Aliphatic heteropolycyclic compounds |
|---|
| External Descriptors | |
|---|
| Physical Properties |
|---|
| State | Not Available |
|---|
| Experimental Properties | | Property | Value | Reference |
|---|
| Melting Point | Not Available | Not Available | | Boiling Point | Not Available | Not Available | | Water Solubility | Not Available | Not Available | | LogP | Not Available | Not Available |
|
|---|
| Predicted Properties | |
|---|
| General References | - Omelchuk OA, Malyshev VI, Medvedev MG, Lysenkova LN, Belov NM, Dezhenkova LG, Grammatikova NE, Scherbakov AM, Shchekotikhin AE: Stereochemistries and Biological Properties of Oligomycin A Diels-Alder Adducts. J Org Chem. 2021 Jun 18;86(12):7975-7986. doi: 10.1021/acs.joc.1c00296. Epub 2021 May 27. [PubMed:34043357 ]
- Xiao L, Niu HJ, Qu TL, Zhang XF, Du FY: Streptomyces sp. FX13 inhibits fungicide-resistant Botrytis cinerea in vitro and in vivo by producing oligomycin A. Pestic Biochem Physiol. 2021 Jun;175:104834. doi: 10.1016/j.pestbp.2021.104834. Epub 2021 Mar 27. [PubMed:33993959 ]
- Wang Q, Lu X, Yang H, Yan H, Wen Y: Redox-sensitive transcriptional regulator SoxR directly controls antibiotic production, development and thiol-oxidative stress response in Streptomyces avermitilis. Microb Biotechnol. 2021 May 5. doi: 10.1111/1751-7915.13813. [PubMed:33951287 ]
- Vestergaard M, Roshanak S, Ingmer H: Targeting the ATP Synthase in Staphylococcus aureus Small Colony Variants, Streptococcus pyogenes and Pathogenic Fungi. Antibiotics (Basel). 2021 Apr 2;10(4). pii: antibiotics10040376. doi: 10.3390/antibiotics10040376. [PubMed:33918382 ]
- Scherbakov AM, Sorokin DV, Omelchuk OA, Shchekotikhin AE, Krasil'nikov MA: Glucose starvation greatly enhances antiproliferative and antiestrogenic potency of oligomycin A in MCF-7 breast cancer cells. Biochimie. 2021 Jul;186:51-58. doi: 10.1016/j.biochi.2021.04.003. Epub 2021 Apr 16. [PubMed:33872751 ]
- Conejeros I, Lopez-Osorio S, Zhou E, Velasquez ZD, Del Rio MC, Burgos RA, Alarcon P, Chaparro-Gutierrez JJ, Hermosilla C, Taubert A: Glycolysis, monocarboxylate transport, and purinergic signaling are key events in Eimeria bovis-induced NETosis. Front Immunol. 2022 Aug 11;13:842482. doi: 10.3389/fimmu.2022.842482. eCollection 2022. [PubMed:36032127 ]
- Chen B, Zhou X, Yang L, Zhou H, Meng M, Zhang L, Li J: A Cuproptosis Activation Scoring model predicts neoplasm-immunity interactions and personalized treatments in glioma. Comput Biol Med. 2022 Sep;148:105924. doi: 10.1016/j.compbiomed.2022.105924. Epub 2022 Aug 8. [PubMed:35964468 ]
- Iriondo MN, Etxaniz A, Varela YR, Ballesteros U, Hervas JH, Montes LR, Goni FM, Alonso A: LC3 subfamily in cardiolipin-mediated mitophagy: a comparison of the LC3A, LC3B and LC3C homologs. Autophagy. 2022 Dec;18(12):2985-3003. doi: 10.1080/15548627.2022.2062111. Epub 2022 Apr 13. [PubMed:35414338 ]
- Cores A, Carmona-Zafra N, Martin-Camara O, Sanchez JD, Duarte P, Villacampa M, Bermejo-Bescos P, Martin-Aragon S, Leon R, Menendez JC: Curcumin-Piperlongumine Hybrids with a Multitarget Profile Elicit Neuroprotection in In Vitro Models of Oxidative Stress and Hyperphosphorylation. Antioxidants (Basel). 2021 Dec 24;11(1):28. doi: 10.3390/antiox11010028. [PubMed:35052532 ]
- Wu L, Liu J, Tian X, Groleau RR, Feng B, Yang Y, Sedgwick AC, Han HH, Wang Y, Wang HM, Huang F, Bull SD, Zhang H, Huang C, Zang Y, Li J, He XP, Li P, Tang B, James TD, Sessler JL: Dual-Channel Fluorescent Probe for the Simultaneous Monitoring of Peroxynitrite and Adenosine-5'-triphosphate in Cellular Applications. J Am Chem Soc. 2022 Jan 12;144(1):174-183. doi: 10.1021/jacs.1c07954. Epub 2021 Dec 21. [PubMed:34931825 ]
- Tian S, Fu L, Zhang J, Xu J, Yuan L, Qin J, Zhang W: Identification of a DNA Methylation-Driven Genes-Based Prognostic Model and Drug Targets in Breast Cancer: In silico Screening of Therapeutic Compounds and in vitro Characterization. Front Immunol. 2021 Oct 20;12:761326. doi: 10.3389/fimmu.2021.761326. eCollection 2021. [PubMed:34745136 ]
- Alonso JM, Escobar-Peso A, Palomino-Antolin A, Diez-Iriepa D, Chioua M, Martinez-Alonso E, Iriepa I, Egea J, Alcazar A, Marco-Contelles J: Privileged Quinolylnitrones for the Combined Therapy of Ischemic Stroke and Alzheimer's Disease. Pharmaceuticals (Basel). 2021 Aug 27;14(9):861. doi: 10.3390/ph14090861. [PubMed:34577561 ]
- Li X, Tian R, Wang L, Xu C, Wu H, Liu L, Huang C: Oligomycin A promotes radioresistance in HT29 colorectal cancer cells and its mechanisms. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2021 Feb 28;46(2):113-120. doi: 10.11817/j.issn.1672-7347.2021.200063. [PubMed:33678646 ]
- LOTUS database [Link]
|
|---|