| Record Information |
|---|
| Version | 2.0 |
|---|
| Created at | 2022-09-04 07:16:00 UTC |
|---|
| Updated at | 2022-09-04 07:16:00 UTC |
|---|
| NP-MRD ID | NP0190567 |
|---|
| Secondary Accession Numbers | None |
|---|
| Natural Product Identification |
|---|
| Common Name | (3s,8r,9z)-heptadeca-1,9-dien-4,6-diyne-3,8-diol |
|---|
| Description | Falcarindiol belongs to the class of organic compounds known as long-chain fatty alcohols. These are fatty alcohols that have an aliphatic tail of 13 to 21 carbon atoms. (3s,8r,9z)-heptadeca-1,9-dien-4,6-diyne-3,8-diol is found in Angelica keiskei and Chaerophyllum hirsutum. (3s,8r,9z)-heptadeca-1,9-dien-4,6-diyne-3,8-diol was first documented in 2021 (PMID: 34959734). Based on a literature review a significant number of articles have been published on Falcarindiol (PMID: 35560192) (PMID: 35232393) (PMID: 35144153) (PMID: 34931585) (PMID: 34900430) (PMID: 34754259). |
|---|
| Structure | CCCCCCC\C=C/[C@@H](O)C#CC#C[C@@H](O)C=C InChI=1S/C17H24O2/c1-3-5-6-7-8-9-10-14-17(19)15-12-11-13-16(18)4-2/h4,10,14,16-19H,2-3,5-9H2,1H3/b14-10-/t16-,17+/m0/s1 |
|---|
| Synonyms | | Value | Source |
|---|
| Heptadeca-1,9-diene-4,6-diyne-3,8-diol | MeSH | | Falcalindiol | MeSH |
|
|---|
| Chemical Formula | C17H24O2 |
|---|
| Average Mass | 260.3770 Da |
|---|
| Monoisotopic Mass | 260.17763 Da |
|---|
| IUPAC Name | (3S,8R,9Z)-heptadeca-1,9-dien-4,6-diyne-3,8-diol |
|---|
| Traditional Name | (3S,8R,9Z)-heptadeca-1,9-dien-4,6-diyne-3,8-diol |
|---|
| CAS Registry Number | Not Available |
|---|
| SMILES | CCCCCCC\C=C/[C@@H](O)C#CC#C[C@@H](O)C=C |
|---|
| InChI Identifier | InChI=1S/C17H24O2/c1-3-5-6-7-8-9-10-14-17(19)15-12-11-13-16(18)4-2/h4,10,14,16-19H,2-3,5-9H2,1H3/b14-10-/t16-,17+/m0/s1 |
|---|
| InChI Key | QWCNQXNAFCBLLV-OQDIJTRPSA-N |
|---|
| Experimental Spectra |
|---|
|
| Not Available | | Predicted Spectra |
|---|
|
| | Spectrum Type | Description | Depositor ID | Depositor Organization | Depositor | Deposition Date | View |
|---|
| 1D NMR | 13C NMR Spectrum (1D, 25 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 100 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 252 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 1000 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 50 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 200 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 75 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 300 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 101 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 400 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 126 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 500 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 151 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 600 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 176 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 700 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 201 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 800 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 226 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 900 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum |
| | Chemical Shift Submissions |
|---|
|
| Not Available | | Species |
|---|
| Species of Origin | |
|---|
| Chemical Taxonomy |
|---|
| Description | Belongs to the class of organic compounds known as long-chain fatty alcohols. These are fatty alcohols that have an aliphatic tail of 13 to 21 carbon atoms. |
|---|
| Kingdom | Organic compounds |
|---|
| Super Class | Lipids and lipid-like molecules |
|---|
| Class | Fatty Acyls |
|---|
| Sub Class | Fatty alcohols |
|---|
| Direct Parent | Long-chain fatty alcohols |
|---|
| Alternative Parents | |
|---|
| Substituents | - Long chain fatty alcohol
- Secondary alcohol
- Organic oxygen compound
- Hydrocarbon derivative
- Organooxygen compound
- Alcohol
- Aliphatic acyclic compound
|
|---|
| Molecular Framework | Aliphatic acyclic compounds |
|---|
| External Descriptors | Not Available |
|---|
| Physical Properties |
|---|
| State | Not Available |
|---|
| Experimental Properties | | Property | Value | Reference |
|---|
| Melting Point | Not Available | Not Available | | Boiling Point | Not Available | Not Available | | Water Solubility | Not Available | Not Available | | LogP | Not Available | Not Available |
|
|---|
| Predicted Properties | |
|---|
| General References | - Santos P, Busta L, Yim WC, Cahoon EB, Kosma DK: Structural diversity, biosynthesis, and function of plant falcarin-type polyacetylenic lipids. J Exp Bot. 2022 May 13;73(9):2889-2904. doi: 10.1093/jxb/erac006. [PubMed:35560192 ]
- Dunemann F, He W, Bottcher C, Reichardt S, Nothnagel T, Heuvelmans P, Hermans F: The genetic control of polyacetylenes involved in bitterness of carrots (Daucus carota L.): Identification of QTLs and candidate genes from the plant fatty acid metabolism. BMC Plant Biol. 2022 Mar 2;22(1):92. doi: 10.1186/s12870-022-03484-1. [PubMed:35232393 ]
- Ha MT, Lee TH, Kim CS, Prajapati R, Kim JA, Choi JS, Min BS: PTP1B and alpha-glucosidase inhibitory activities of the chemical constituents from Hedera rhombea fruits: Kinetic analysis and molecular docking simulation. Phytochemistry. 2022 May;197:113100. doi: 10.1016/j.phytochem.2022.113100. Epub 2022 Feb 7. [PubMed:35144153 ]
- Jakubczyk K, Lukomska A, Czaplicki S, Wajs-Bonikowska A, Gutowska I, Czapla N, Tanska M, Janda-Milczarek K: Bioactive Compounds in Aegopodium podagraria Leaf Extracts and Their Effects against Fluoride-Modulated Oxidative Stress in the THP-1 Cell Line. Pharmaceuticals (Basel). 2021 Dec 20;14(12):1334. doi: 10.3390/ph14121334. [PubMed:34959734 ]
- Park KR, Leem HH, Kwon YJ, Kwon IK, Hong JT, Yun HM: Falcarindiol Stimulates Apoptotic and Autophagic Cell Death to Attenuate Cell Proliferation, Cell Division, and Metastasis through the PI3K/AKT/mTOR/p70S6K Pathway in Human Oral Squamous Cell Carcinomas. Am J Chin Med. 2022;50(1):295-311. doi: 10.1142/S0192415X22500112. Epub 2021 Dec 20. [PubMed:34931585 ]
- Wan JY, Wan JX, Wang S, Wang X, Guo W, Ma H, Wu Y, Wang CZ, Qi LW, Li P, Yao H, Yuan CS: Chemical profiling of root bark extract from Oplopanax elatus and its in vitro biotransformation by human intestinal microbiota. PeerJ. 2021 Nov 24;9:e12513. doi: 10.7717/peerj.12513. eCollection 2021. [PubMed:34900430 ]
- Wang CZ, Luo Y, Huang WH, Zeng J, Zhang CF, Lager M, Du W, Xu M, Yuan CS: Falcarindiol and dichloromethane fraction are bioactive components in Oplopanax elatus: Colorectal cancer chemoprevention via induction of apoptosis and G2/M cell cycle arrest mediated by cyclin A upregulation. J Appl Biomed. 2021;19(2):113-124. doi: 10.32725/jab.2021.013. [PubMed:34754259 ]
- Pereira CG, Moraes CB, Franco CH, Feltrin C, Grougnet R, Barbosa EG, Panciera M, Correia CRD, Rodrigues MJ, Custodio L: In Vitro Anti-Trypanosoma cruzi Activity of Halophytes from Southern Portugal Reloaded: A Special Focus on Sea Fennel (Crithmum maritimum L.). Plants (Basel). 2021 Oct 20;10(11):2235. doi: 10.3390/plants10112235. [PubMed:34834598 ]
- Zhao C, Zheng H, Zhou L, Ji H, Zhao L, Yu W, Gong Q: Falcarindiol Isolated from Notopterygium incisum Inhibits the Quorum Sensing of Pseudomonas aeruginosa. Molecules. 2021 Sep 29;26(19):5896. doi: 10.3390/molecules26195896. [PubMed:34641440 ]
- Tan WL, Zhang C, Li Y, Guo K, Gao XW, Wei J, Yi D, Pu L, Wang Q: Synthesis, Anticancer Activity, Structure-Activity Relationship and Mechanistic Investigations of Falcarindiol Analogues. ChemMedChem. 2021 Dec 6;16(23):3569-3575. doi: 10.1002/cmdc.202100377. Epub 2021 Sep 6. [PubMed:34414677 ]
- LOTUS database [Link]
|
|---|