Np mrd loader

Record Information
Version1.0
Created at2022-09-04 00:10:14 UTC
Updated at2022-09-04 00:10:14 UTC
NP-MRD IDNP0184915
Secondary Accession NumbersNone
Natural Product Identification
Common Name10-methyl-4-{[(2e)-2-methylbut-2-enoyl]oxy}-3-methylidene-2-oxo-3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-6-carboxylic acid
DescriptionGermanin B belongs to the class of organic compounds known as germacranolides and derivatives. These are sesquiterpene lactones with a structure based on the germacranolide skeleton, characterized by a gamma lactone fused to a 1,7-dimethylcyclodec-1-ene moiety. 10-methyl-4-{[(2e)-2-methylbut-2-enoyl]oxy}-3-methylidene-2-oxo-3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-6-carboxylic acid is found in Inula germanica. It was first documented in 2020 (PMID: 33519460). Based on a literature review a significant number of articles have been published on Germanin B (PMID: 33493498) (PMID: 35693834) (PMID: 35671324) (PMID: 35356785) (PMID: 35269985) (PMID: 35250636).
Structure
Thumb
SynonymsNot Available
Chemical FormulaC20H24O6
Average Mass360.4060 Da
Monoisotopic Mass360.15729 Da
IUPAC Name10-methyl-4-{[(2E)-2-methylbut-2-enoyl]oxy}-3-methylidene-2-oxo-2H,3H,3aH,4H,5H,8H,9H,11aH-cyclodeca[b]furan-6-carboxylic acid
Traditional Name10-methyl-4-{[(2E)-2-methylbut-2-enoyl]oxy}-3-methylidene-2-oxo-3aH,4H,5H,8H,9H,11aH-cyclodeca[b]furan-6-carboxylic acid
CAS Registry NumberNot Available
SMILES
C\C=C(/C)C(=O)OC1C\C(=C/CC\C(C)=C/C2OC(=O)C(=C)C12)C(O)=O
InChI Identifier
InChI=1S/C20H24O6/c1-5-12(3)19(23)25-16-10-14(18(21)22)8-6-7-11(2)9-15-17(16)13(4)20(24)26-15/h5,8-9,15-17H,4,6-7,10H2,1-3H3,(H,21,22)/b11-9-,12-5+,14-8+
InChI KeyIOPBGRHISQTQKP-KODVERRDSA-N
Experimental Spectra
Not Available
Predicted Spectra
Spectrum TypeDescriptionDepositor IDDepositor OrganizationDepositorDeposition DateView
1D NMR13C NMR Spectrum (1D, 25 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 100 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 252 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 1000 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 50 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 200 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 75 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 300 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 101 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 400 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 126 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 500 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 151 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 600 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 176 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 700 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 201 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 800 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 226 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 900 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
Chemical Shift Submissions
Not Available
Species
Species of Origin
Species NameSourceReference
Inula germanicaLOTUS Database
Chemical Taxonomy
Description Belongs to the class of organic compounds known as germacranolides and derivatives. These are sesquiterpene lactones with a structure based on the germacranolide skeleton, characterized by a gamma lactone fused to a 1,7-dimethylcyclodec-1-ene moiety.
KingdomOrganic compounds
Super ClassLipids and lipid-like molecules
ClassPrenol lipids
Sub ClassTerpene lactones
Direct ParentGermacranolides and derivatives
Alternative Parents
Substituents
  • Germacranolide
  • Germacrane sesquiterpenoid
  • Sesquiterpenoid
  • Tricarboxylic acid or derivatives
  • Fatty acid ester
  • Gamma butyrolactone
  • Fatty acyl
  • Oxolane
  • Alpha,beta-unsaturated carboxylic ester
  • Enoate ester
  • Lactone
  • Carboxylic acid ester
  • Oxacycle
  • Carboxylic acid
  • Organoheterocyclic compound
  • Carboxylic acid derivative
  • Organooxygen compound
  • Hydrocarbon derivative
  • Organic oxide
  • Organic oxygen compound
  • Carbonyl group
  • Aliphatic heteropolycyclic compound
Molecular FrameworkAliphatic heteropolycyclic compounds
External DescriptorsNot Available
Physical Properties
StateNot Available
Experimental Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Predicted Properties
PropertyValueSource
logP3.88ChemAxon
pKa (Strongest Acidic)4.47ChemAxon
pKa (Strongest Basic)-6.6ChemAxon
Physiological Charge-1ChemAxon
Hydrogen Acceptor Count4ChemAxon
Hydrogen Donor Count1ChemAxon
Polar Surface Area89.9 ŲChemAxon
Rotatable Bond Count4ChemAxon
Refractivity97.06 m³·mol⁻¹ChemAxon
Polarizability37.19 ųChemAxon
Number of Rings2ChemAxon
BioavailabilityYesChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleNoChemAxon
MDDR-like RuleNoChemAxon
HMDB IDNot Available
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FoodDB IDNot Available
KNApSAcK IDNot Available
Chemspider ID113642498
KEGG Compound IDNot Available
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkNot Available
METLIN IDNot Available
PubChem Compound90473376
PDB IDNot Available
ChEBI IDNot Available
Good Scents IDNot Available
References
General References
  1. Chama MA, Modos D, Mervin LH, Owusu KB, Ayine-Tora DM, Egyir B, Paemka L, Yankson G, Ohashi M, Afzal AM, Bender A: Towards understanding antimicrobial activity, cytotoxicity and the mode of action of dichapetalins A and M using in silico and in vitro studies. Toxicon. 2021 Apr 15;193:28-37. doi: 10.1016/j.toxicon.2021.01.002. Epub 2021 Jan 23. [PubMed:33493498 ]
  2. Zhang M, Fei S, Xia J, Wang Y, Wu H, Li X, Guo Y, Swevers L, Sun J, Feng M: Sirt5 Inhibits BmNPV Replication by Promoting a Relish-Mediated Antiviral Pathway in Bombyx mori. Front Immunol. 2022 May 23;13:906738. doi: 10.3389/fimmu.2022.906738. eCollection 2022. [PubMed:35693834 ]
  3. Marriott AE, Furlong Silva J, Pionnier N, Sjoberg H, Archer J, Steven A, Kempf D, Taylor MJ, Turner JD: A mouse infection model and long-term lymphatic endothelium co-culture system to evaluate drugs against adult Brugia malayi. PLoS Negl Trop Dis. 2022 Jun 7;16(6):e0010474. doi: 10.1371/journal.pntd.0010474. eCollection 2022 Jun. [PubMed:35671324 ]
  4. Kasozi KI, MacLeod ET, Ntulume I, Welburn SC: An Update on African Trypanocide Pharmaceutics and Resistance. Front Vet Sci. 2022 Mar 7;9:828111. doi: 10.3389/fvets.2022.828111. eCollection 2022. [PubMed:35356785 ]
  5. Ungogo MA, Campagnaro GD, Alghamdi AH, Natto MJ, de Koning HP: Differences in Transporters Rather than Drug Targets Are the Principal Determinants of the Different Innate Sensitivities of Trypanosoma congolense and Trypanozoon Subgenus Trypanosomes to Diamidines and Melaminophenyl Arsenicals. Int J Mol Sci. 2022 Mar 5;23(5):2844. doi: 10.3390/ijms23052844. [PubMed:35269985 ]
  6. Domnik NJ, Vincent SG, Fisher JT: Mechanosensitivity of Murine Lung Slowly Adapting Receptors: Minimal Impact of Chemosensory, Serotonergic, and Purinergic Signaling. Front Physiol. 2022 Feb 16;13:833665. doi: 10.3389/fphys.2022.833665. eCollection 2022. [PubMed:35250636 ]
  7. Ullah A, Khan A, Al-Harrasi A, Ullah K, Shabbir A: Three-Dimensional Structure Characterization and Inhibition Study of Exfoliative Toxin D From Staphylococcus aureus. Front Pharmacol. 2022 Feb 18;13:800970. doi: 10.3389/fphar.2022.800970. eCollection 2022. [PubMed:35250557 ]
  8. Gangwar M, Jha R, Goyal M, Srivastava M: Biochemical characterization of Recombinase A from Wolbachia endosymbiont of filarial nematode Brugia malayi (wBmRecA). Int J Parasitol. 2021 Sep;51(10):841-853. doi: 10.1016/j.ijpara.2021.02.007. Epub 2021 Jul 15. [PubMed:34273392 ]
  9. Ullah A, Ullah K: Inhibition of SARS-CoV-2 3CL M(pro) by Natural and Synthetic Inhibitors: Potential Implication for Vaccine Production Against COVID-19. Front Mol Biosci. 2021 Apr 12;8:640819. doi: 10.3389/fmolb.2021.640819. eCollection 2021. [PubMed:33912587 ]
  10. Bojadzic D, Alcazar O, Buchwald P: Methylene Blue Inhibits the SARS-CoV-2 Spike-ACE2 Protein-Protein Interaction-a Mechanism that can Contribute to its Antiviral Activity Against COVID-19. Front Pharmacol. 2021 Jan 13;11:600372. doi: 10.3389/fphar.2020.600372. eCollection 2020. [PubMed:33519460 ]
  11. Feng CW, Chen NF, Chan TF, Chen WF: Therapeutic Role of Protein Tyrosine Phosphatase 1B in Parkinson's Disease via Antineuroinflammation and Neuroprotection In Vitro and In Vivo. Parkinsons Dis. 2020 Dec 29;2020:8814236. doi: 10.1155/2020/8814236. eCollection 2020. [PubMed:33456749 ]
  12. Kwiatkowski MA, Roberts BZ, van Enkhuizen J, Ji B, Zhou X, Young JW: Chronic nicotine, but not suramin or resveratrol, partially remediates the mania-like profile of dopamine transporter knockdown mice. Eur Neuropsychopharmacol. 2021 Jan;42:75-86. doi: 10.1016/j.euroneuro.2020.11.004. Epub 2020 Nov 13. [PubMed:33191077 ]
  13. Ndung'u K, Murilla GA, Thuita JK, Ngae GN, Auma JE, Gitonga PK, Thungu DK, Kurgat RK, Chemuliti JK, Mdachi RE: Differential virulence of Trypanosoma brucei rhodesiense isolates does not influence the outcome of treatment with anti-trypanosomal drugs in the mouse model. PLoS One. 2020 Nov 5;15(11):e0229060. doi: 10.1371/journal.pone.0229060. eCollection 2020. [PubMed:33151938 ]
  14. Zhu W, Xu M, Chen CZ, Guo H, Shen M, Hu X, Shinn P, Klumpp-Thomas C, Michael SG, Zheng W: Identification of SARS-CoV-2 3CL Protease Inhibitors by a Quantitative High-Throughput Screening. ACS Pharmacol Transl Sci. 2020 Sep 4;3(5):1008-1016. doi: 10.1021/acsptsci.0c00108. eCollection 2020 Oct 9. [PubMed:33062953 ]
  15. Zhu W, Xu M, Chen CZ, Guo H, Shen M, Hu X, Shinn P, Klumpp-Thomas C, Michael SG, Zheng W: Identification of SARS-CoV-2 3CL Protease Inhibitors by a Quantitative High-throughput Screening. bioRxiv. 2020 Aug 11:2020.07.17.207019. doi: 10.1101/2020.07.17.207019. Preprint. [PubMed:32803196 ]
  16. LOTUS database [Link]