| Record Information |
|---|
| Version | 2.0 |
|---|
| Created at | 2022-09-03 21:02:56 UTC |
|---|
| Updated at | 2022-09-03 21:02:57 UTC |
|---|
| NP-MRD ID | NP0182377 |
|---|
| Secondary Accession Numbers | None |
|---|
| Natural Product Identification |
|---|
| Common Name | (2s,3s)-4-[(1e)-3-[(1s)-1-carboxy-2-(3,4-dihydroxyphenyl)ethoxy]-3-oxoprop-1-en-1-yl]-2-(3,4-dihydroxyphenyl)-7-hydroxy-2,3-dihydro-1-benzofuran-3-carboxylic acid |
|---|
| Description | Lithospermic acid, also known as lithospermate or monardic acid a, belongs to the class of organic compounds known as 2-arylbenzofuran flavonoids. These are phenylpropanoids containing the 2-phenylbenzofuran moiety. (2s,3s)-4-[(1e)-3-[(1s)-1-carboxy-2-(3,4-dihydroxyphenyl)ethoxy]-3-oxoprop-1-en-1-yl]-2-(3,4-dihydroxyphenyl)-7-hydroxy-2,3-dihydro-1-benzofuran-3-carboxylic acid is found in Lithospermum erythrorhizon, Lithospermum ruderale, Origanum vulgare, Salvia cavaleriei, Salvia chinensis, Salvia miltiorrhiza and Salvia przewalskii. (2s,3s)-4-[(1e)-3-[(1s)-1-carboxy-2-(3,4-dihydroxyphenyl)ethoxy]-3-oxoprop-1-en-1-yl]-2-(3,4-dihydroxyphenyl)-7-hydroxy-2,3-dihydro-1-benzofuran-3-carboxylic acid was first documented in 2022 (PMID: 35287248). Based on a literature review a significant number of articles have been published on Lithospermic acid (PMID: 35620286) (PMID: 35468503) (PMID: 35409393) (PMID: 35930923) (PMID: 35905684) (PMID: 35784715). |
|---|
| Structure | OC(=O)[C@H](CC1=CC=C(O)C(O)=C1)OC(=O)\C=C\C1=CC=C(O)C2=C1[C@@H]([C@H](O2)C1=CC=C(O)C(O)=C1)C(O)=O InChI=1S/C27H22O12/c28-15-5-1-12(9-18(15)31)10-20(26(34)35)38-21(33)8-4-13-2-7-17(30)25-22(13)23(27(36)37)24(39-25)14-3-6-16(29)19(32)11-14/h1-9,11,20,23-24,28-32H,10H2,(H,34,35)(H,36,37)/b8-4+/t20-,23-,24+/m0/s1 |
|---|
| Synonyms | | Value | Source |
|---|
| Lithospermate | Generator | | 4-(3-(1-Carboxy-2-(3,4-dihydroxyphenyl)ethoxy)-3-oxo-1-propenyl)-2-(3,4-dihydroxyphenyl)-2,3-dihydro-7-hydroxy-3-benzofurancarboxylic acid | MeSH | | Monardic acid a | MeSH |
|
|---|
| Chemical Formula | C27H22O12 |
|---|
| Average Mass | 538.4610 Da |
|---|
| Monoisotopic Mass | 538.11113 Da |
|---|
| IUPAC Name | (2S,3S)-4-[(1E)-3-[(1S)-1-carboxy-2-(3,4-dihydroxyphenyl)ethoxy]-3-oxoprop-1-en-1-yl]-2-(3,4-dihydroxyphenyl)-7-hydroxy-2,3-dihydro-1-benzofuran-3-carboxylic acid |
|---|
| Traditional Name | (2S,3S)-4-[(1E)-3-[(1S)-1-carboxy-2-(3,4-dihydroxyphenyl)ethoxy]-3-oxoprop-1-en-1-yl]-2-(3,4-dihydroxyphenyl)-7-hydroxy-2,3-dihydro-1-benzofuran-3-carboxylic acid |
|---|
| CAS Registry Number | Not Available |
|---|
| SMILES | OC(=O)[C@H](CC1=CC=C(O)C(O)=C1)OC(=O)\C=C\C1=CC=C(O)C2=C1[C@@H]([C@H](O2)C1=CC=C(O)C(O)=C1)C(O)=O |
|---|
| InChI Identifier | InChI=1S/C27H22O12/c28-15-5-1-12(9-18(15)31)10-20(26(34)35)38-21(33)8-4-13-2-7-17(30)25-22(13)23(27(36)37)24(39-25)14-3-6-16(29)19(32)11-14/h1-9,11,20,23-24,28-32H,10H2,(H,34,35)(H,36,37)/b8-4+/t20-,23-,24+/m0/s1 |
|---|
| InChI Key | UJZQBMQZMKFSRV-WDMOTZMRSA-N |
|---|
| Experimental Spectra |
|---|
|
| Not Available | | Predicted Spectra |
|---|
|
| | Spectrum Type | Description | Depositor ID | Depositor Organization | Depositor | Deposition Date | View |
|---|
| 1D NMR | 13C NMR Spectrum (1D, 25 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 100 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 252 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 1000 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 50 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 200 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 75 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 300 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 101 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 400 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 126 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 500 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 151 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 600 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 176 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 700 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 201 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 800 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 226 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 900 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum |
| | Chemical Shift Submissions |
|---|
|
| Not Available | | Species |
|---|
| Species of Origin | |
|---|
| Chemical Taxonomy |
|---|
| Description | Belongs to the class of organic compounds known as 2-arylbenzofuran flavonoids. These are phenylpropanoids containing the 2-phenylbenzofuran moiety. |
|---|
| Kingdom | Organic compounds |
|---|
| Super Class | Phenylpropanoids and polyketides |
|---|
| Class | 2-arylbenzofuran flavonoids |
|---|
| Sub Class | Not Available |
|---|
| Direct Parent | 2-arylbenzofuran flavonoids |
|---|
| Alternative Parents | |
|---|
| Substituents | - 2-arylbenzofuran flavonoid
- Cinnamic acid or derivatives
- Coumaric acid or derivatives
- Cinnamic acid ester
- 3-phenylpropanoic-acid
- Tricarboxylic acid or derivatives
- Coumaran
- Catechol
- Styrene
- Alkyl aryl ether
- 1-hydroxy-4-unsubstituted benzenoid
- 1-hydroxy-2-unsubstituted benzenoid
- Phenol
- Fatty acid ester
- Benzenoid
- Fatty acyl
- Monocyclic benzene moiety
- Alpha,beta-unsaturated carboxylic ester
- Enoate ester
- Carboxylic acid ester
- Ether
- Carboxylic acid
- Oxacycle
- Carboxylic acid derivative
- Organoheterocyclic compound
- Organic oxygen compound
- Organic oxide
- Carbonyl group
- Hydrocarbon derivative
- Organooxygen compound
- Aromatic heteropolycyclic compound
|
|---|
| Molecular Framework | Aromatic heteropolycyclic compounds |
|---|
| External Descriptors | Not Available |
|---|
| Physical Properties |
|---|
| State | Not Available |
|---|
| Experimental Properties | | Property | Value | Reference |
|---|
| Melting Point | Not Available | Not Available | | Boiling Point | Not Available | Not Available | | Water Solubility | Not Available | Not Available | | LogP | Not Available | Not Available |
|
|---|
| Predicted Properties | |
|---|
| General References | - Yao Y, Wang S, Zhou R, Shang Y, Du K, He J, Li J, Ma L, Chang Y: A novel reverse migration micellar electrokinetic chromatography method for in-capillary screening and quantifying of antioxidant components in Sanyetangzhiqing using 2,2'-Azinobis-(3-ethylbenzthiazoline-6-sulphonate) as oxidation-free radical. Electrophoresis. 2022 Jun;43(11):1148-1160. doi: 10.1002/elps.202100330. Epub 2022 Apr 20. [PubMed:35287248 ]
- Lu JL, Zeng XS, Zhou X, Yang JL, Ren LL, Long XY, Wang FQ, Olaleye OE, Tian NN, Zhu YX, Dong JJ, Jia WW, Li C: Molecular Basis Underlying Hepatobiliary and Renal Excretion of Phenolic Acids of Salvia miltiorrhiza Roots (Danshen). Front Pharmacol. 2022 May 10;13:911982. doi: 10.3389/fphar.2022.911982. eCollection 2022. [PubMed:35620286 ]
- Guo Y, Mao R, Zhang Y, Li R, Oduro PK, Si D, Han L, Huang Y, Pan G: An integrated strategy for the systematic chemical characterization of Salvianolate lyophilized injection using four scan modes based on the ultra-high performance liquid chromatography-triple quadrupole-linear ion trap mass spectrometry. J Pharm Biomed Anal. 2022 Jun 5;215:114769. doi: 10.1016/j.jpba.2022.114769. Epub 2022 Apr 14. [PubMed:35468503 ]
- Liao HJ, Tzen JTC: The Potential Role of Phenolic Acids from Salvia miltiorrhiza and Cynara scolymus and Their Derivatives as JAK Inhibitors: An In Silico Study. Int J Mol Sci. 2022 Apr 5;23(7). pii: ijms23074033. doi: 10.3390/ijms23074033. [PubMed:35409393 ]
- Gu QC, Wei XL, Ji Q, Feng ZM, Jiang JS, Xu Zhang, Yuan X, Zhang XW, Zhang PC, Yang YN: Two dimers generated by lithospermic decarboxylation coupling from Danshen. Bioorg Chem. 2022 Nov;128:106065. doi: 10.1016/j.bioorg.2022.106065. Epub 2022 Jul 30. [PubMed:35930923 ]
- Zhu SC, Shi MZ, Yu YL, Liu XG, Cao J: Simultaneous capture of hydrophilic and hydrophobic compounds from complex plants by biosurfactant-assisted mechanical amorphous dispersion extraction. J Chromatogr A. 2022 Aug 16;1678:463356. doi: 10.1016/j.chroma.2022.463356. Epub 2022 Jul 21. [PubMed:35905684 ]
- Berdowska I, Zielinski B, Matusiewicz M, Fecka I: Modulatory Impact of Lamiaceae Metabolites on Apoptosis of Human Leukemia Cells. Front Pharmacol. 2022 Jun 15;13:867709. doi: 10.3389/fphar.2022.867709. eCollection 2022. [PubMed:35784715 ]
- Yang DF, Liang ZS: [Three-dimensional multi-component quality evaluation of Chinese medicine based on proportion consistency of active components: a study of Salvia miltiorrhiza]. Zhongguo Zhong Yao Za Zhi. 2022 Jun;47(11):3118-3124. doi: 10.19540/j.cnki.cjcmm.20211220.201. [PubMed:35718537 ]
- Chen LC, Cheng YP, Liu CY, Guo JW: Lithosepermic Acid Restored the Skin Barrier Functions in the Imiquimod-Induced Psoriasis-like Animal Model. Int J Mol Sci. 2022 May 31;23(11):6172. doi: 10.3390/ijms23116172. [PubMed:35682849 ]
- Xu Y, Geng L, Zhang Y, Jones JA, Zhang M, Chen Y, Tan R, Koffas MAG, Wang Z, Zhao S: De novo Biosynthesis of Salvianolic Acid B in Saccharomyces cerevisiae Engineered with the Rosmarinic Acid Biosynthetic Pathway. J Agric Food Chem. 2022 Feb 23;70(7):2290-2302. doi: 10.1021/acs.jafc.1c06329. Epub 2022 Feb 14. [PubMed:35157428 ]
- LOTUS database [Link]
|
|---|