| Record Information |
|---|
| Version | 2.0 |
|---|
| Created at | 2022-09-03 20:58:30 UTC |
|---|
| Updated at | 2022-09-03 20:58:30 UTC |
|---|
| NP-MRD ID | NP0182318 |
|---|
| Secondary Accession Numbers | None |
|---|
| Natural Product Identification |
|---|
| Common Name | (+-)-carnegine |
|---|
| Description | (-)-Carnegine, also known as carnegine, belongs to the class of organic compounds known as tetrahydroisoquinolines. These are tetrahydrogenated isoquinoline derivatives. (+-)-carnegine is found in Carnegiea gigantea, Neobuxbaumia multiareolata, Echium humile and Pachycereus weberi. (+-)-carnegine was first documented in 2003 (PMID: 12939030). Based on a literature review a small amount of articles have been published on (-)-Carnegine (PMID: 23677770) (PMID: 20704442) (PMID: 20027474) (PMID: 18671433). |
|---|
| Structure | COC1=CC2=C(C=C1OC)[C@H](C)N(C)CC2 InChI=1S/C13H19NO2/c1-9-11-8-13(16-4)12(15-3)7-10(11)5-6-14(9)2/h7-9H,5-6H2,1-4H3/t9-/m0/s1 |
|---|
| Synonyms | |
|---|
| Chemical Formula | C13H19NO2 |
|---|
| Average Mass | 221.3000 Da |
|---|
| Monoisotopic Mass | 221.14158 Da |
|---|
| IUPAC Name | (1S)-6,7-dimethoxy-1,2-dimethyl-1,2,3,4-tetrahydroisoquinoline |
|---|
| Traditional Name | (+-)-carnegine |
|---|
| CAS Registry Number | Not Available |
|---|
| SMILES | COC1=CC2=C(C=C1OC)[C@H](C)N(C)CC2 |
|---|
| InChI Identifier | InChI=1S/C13H19NO2/c1-9-11-8-13(16-4)12(15-3)7-10(11)5-6-14(9)2/h7-9H,5-6H2,1-4H3/t9-/m0/s1 |
|---|
| InChI Key | HRSIPKSSEVRSPG-VIFPVBQESA-N |
|---|
| Experimental Spectra |
|---|
|
| Not Available | | Predicted Spectra |
|---|
|
| | Spectrum Type | Description | Depositor ID | Depositor Organization | Depositor | Deposition Date | View |
|---|
| 1D NMR | 13C NMR Spectrum (1D, 25 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 100 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 252 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 1000 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 50 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 200 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 75 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 300 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 101 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 400 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 126 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 500 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 151 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 600 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 176 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 700 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 201 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 800 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 226 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 900 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum |
| | Chemical Shift Submissions |
|---|
|
| Not Available | | Species |
|---|
| Species of Origin | |
|---|
| Chemical Taxonomy |
|---|
| Description | Belongs to the class of organic compounds known as tetrahydroisoquinolines. These are tetrahydrogenated isoquinoline derivatives. |
|---|
| Kingdom | Organic compounds |
|---|
| Super Class | Organoheterocyclic compounds |
|---|
| Class | Tetrahydroisoquinolines |
|---|
| Sub Class | Not Available |
|---|
| Direct Parent | Tetrahydroisoquinolines |
|---|
| Alternative Parents | |
|---|
| Substituents | - Tetrahydroisoquinoline
- Anisole
- Alkyl aryl ether
- Aralkylamine
- Benzenoid
- Tertiary amine
- Tertiary aliphatic amine
- Ether
- Azacycle
- Organopnictogen compound
- Organooxygen compound
- Organonitrogen compound
- Organic nitrogen compound
- Organic oxygen compound
- Hydrocarbon derivative
- Amine
- Aromatic heteropolycyclic compound
|
|---|
| Molecular Framework | Aromatic heteropolycyclic compounds |
|---|
| External Descriptors | |
|---|
| Physical Properties |
|---|
| State | Not Available |
|---|
| Experimental Properties | | Property | Value | Reference |
|---|
| Melting Point | Not Available | Not Available | | Boiling Point | Not Available | Not Available | | Water Solubility | Not Available | Not Available | | LogP | Not Available | Not Available |
|
|---|
| Predicted Properties | |
|---|
| General References | - Li X, Leonori D, Sheikh NS, Coldham I: Synthesis of 1-substituted tetrahydroisoquinolines by lithiation and electrophilic quenching guided by in situ IR and NMR spectroscopy and application to the synthesis of salsolidine, carnegine and laudanosine. Chemistry. 2013 Jun 10;19(24):7724-30. doi: 10.1002/chem.201301096. Epub 2013 May 15. [PubMed:23677770 ]
- Louafi F, Hurvois JP, Chibani A, Roisnel T: Synthesis of tetrahydroisoquinoline alkaloids via anodic cyanation as the key step. J Org Chem. 2010 Aug 20;75(16):5721-4. doi: 10.1021/jo100714y. [PubMed:20704442 ]
- Mezghani-Jarraya R, Hammami H, Ayadi A, Damak M: Molluscicidal activity of Hammada scoparia (Pomel) Iljin leaf extracts and the principal alkaloids isolated from them against Galba truncatula. Mem Inst Oswaldo Cruz. 2009 Nov;104(7):1035-8. doi: 10.1590/s0074-02762009000700017. [PubMed:20027474 ]
- Iwasa K, Takahashi T, Nishiyama Y, Moriyasu M, Sugiura M, Takeuchi A, Tode C, Tokuda H, Takeda K: Online structural elucidation of alkaloids and other constituents in crude extracts and cultured cells of Nandina domestica by combination of LC-MS/MS, LC-NMR, and LC-CD analyses. J Nat Prod. 2008 Aug;71(8):1376-85. doi: 10.1021/np8001496. Epub 2008 Aug 1. [PubMed:18671433 ]
- El-Shazly A, Wink M: Tetrahydroisoquinoline and beta-carboline alkaloids from Haloxylon articulatum (Cav.) Bunge (Chenopodiaceae). Z Naturforsch C J Biosci. 2003 Jul-Aug;58(7-8):477-80. doi: 10.1515/znc-2003-7-805. [PubMed:12939030 ]
- LOTUS database [Link]
|
|---|