Np mrd loader

Record Information
Version1.0
Created at2022-09-03 20:51:44 UTC
Updated at2022-09-03 20:51:44 UTC
NP-MRD IDNP0182219
Secondary Accession NumbersNone
Natural Product Identification
Common Name(7r,8s,9s,15s,16r)-8-hydroxy-16-[(2s,3r,4s)-3-hydroxy-4-[(2r,4r,5s,6r)-2-hydroxy-6-isopropyl-4-methoxy-5-methyloxan-2-yl]pentan-2-yl]-15-methoxy-3,5,7,9,11-pentamethyl-1-oxacyclohexadeca-3,5,11,13-tetraen-2-one
DescriptionBafilomycin J belongs to the class of organic compounds known as macrolides and analogues. These are organic compounds containing a lactone ring of at least twelve members. It was first documented in 2012 (PMID: 22999097). Based on a literature review a significant number of articles have been published on Bafilomycin J (PMID: 34601575) (PMID: 32784408) (PMID: 32075509) (PMID: 30701092) (PMID: 30307767) (PMID: 30094371).
Structure
Thumb
SynonymsNot Available
Chemical FormulaC36H60O8
Average Mass620.8680 Da
Monoisotopic Mass620.42882 Da
IUPAC Name(7R,8S,9S,15S,16R)-8-hydroxy-16-[(2S,3R,4S)-3-hydroxy-4-[(2R,4R,5S,6R)-2-hydroxy-4-methoxy-5-methyl-6-(propan-2-yl)oxan-2-yl]pentan-2-yl]-15-methoxy-3,5,7,9,11-pentamethyl-1-oxacyclohexadeca-3,5,11,13-tetraen-2-one
Traditional Name(7R,8S,9S,15S,16R)-8-hydroxy-16-[(2S,3R,4S)-3-hydroxy-4-[(2R,4R,5S,6R)-2-hydroxy-6-isopropyl-4-methoxy-5-methyloxan-2-yl]pentan-2-yl]-15-methoxy-3,5,7,9,11-pentamethyl-1-oxacyclohexadeca-3,5,11,13-tetraen-2-one
CAS Registry NumberNot Available
SMILES
CO[C@@H]1C[C@@](O)(O[C@H](C(C)C)[C@H]1C)[C@@H](C)[C@H](O)[C@H](C)[C@H]1OC(=O)C(C)=CC(C)=C[C@@H](C)[C@@H](O)[C@@H](C)CC(C)=CC=C[C@@H]1OC
InChI Identifier
InChI=1S/C36H60O8/c1-20(2)33-26(8)30(42-12)19-36(40,44-33)28(10)32(38)27(9)34-29(41-11)15-13-14-21(3)16-23(5)31(37)24(6)17-22(4)18-25(7)35(39)43-34/h13-15,17-18,20,23-24,26-34,37-38,40H,16,19H2,1-12H3/t23-,24+,26-,27-,28-,29-,30+,31-,32+,33+,34+,36+/m0/s1
InChI KeyPHNJREQYDLKYEB-PBJZSJAHSA-N
Experimental Spectra
Not Available
Predicted Spectra
Spectrum TypeDescriptionDepositor IDDepositor OrganizationDepositorDeposition DateView
1D NMR13C NMR Spectrum (1D, 25 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 100 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 252 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 1000 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 50 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 200 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 75 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 300 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 101 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 400 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 126 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 500 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 151 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 600 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 176 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 700 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 201 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 800 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 226 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 900 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
Chemical Shift Submissions
Not Available
Species
Species of OriginNot Available
Chemical Taxonomy
Description Belongs to the class of organic compounds known as macrolides and analogues. These are organic compounds containing a lactone ring of at least twelve members.
KingdomOrganic compounds
Super ClassPhenylpropanoids and polyketides
ClassMacrolides and analogues
Sub ClassNot Available
Direct ParentMacrolides and analogues
Alternative Parents
Substituents
  • Macrolide
  • Oxane
  • Alpha,beta-unsaturated carboxylic ester
  • Enoate ester
  • Carboxylic acid ester
  • Hemiacetal
  • Lactone
  • Secondary alcohol
  • Carboxylic acid derivative
  • Dialkyl ether
  • Ether
  • Oxacycle
  • Monocarboxylic acid or derivatives
  • Organoheterocyclic compound
  • Carbonyl group
  • Organic oxide
  • Hydrocarbon derivative
  • Alcohol
  • Organic oxygen compound
  • Organooxygen compound
  • Aliphatic heteromonocyclic compound
Molecular FrameworkAliphatic heteromonocyclic compounds
External DescriptorsNot Available
Physical Properties
StateNot Available
Experimental Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Predicted Properties
PropertyValueSource
logP6.53ChemAxon
pKa (Strongest Acidic)11.69ChemAxon
pKa (Strongest Basic)-0.73ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count7ChemAxon
Hydrogen Donor Count3ChemAxon
Polar Surface Area114.68 ŲChemAxon
Rotatable Bond Count7ChemAxon
Refractivity176.92 m³·mol⁻¹ChemAxon
Polarizability70.55 ųChemAxon
Number of Rings2ChemAxon
BioavailabilityNoChemAxon
Rule of FiveNoChemAxon
Ghose FilterNoChemAxon
Veber's RuleNoChemAxon
MDDR-like RuleNoChemAxon
HMDB IDNot Available
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FoodDB IDNot Available
KNApSAcK IDNot Available
Chemspider IDNot Available
KEGG Compound IDNot Available
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkNot Available
METLIN IDNot Available
PubChem Compound139583355
PDB IDNot Available
ChEBI IDNot Available
Good Scents IDNot Available
References
General References
  1. Liras P, Martin JF: Streptomyces clavuligerus: The Omics Era. J Ind Microbiol Biotechnol. 2021 Dec 23;48(9-10):kuab072. doi: 10.1093/jimb/kuab072. [PubMed:34601575 ]
  2. Kubo Y, Yamada M, Konakawa S, Akanuma SI, Hosoya KI: Uptake Study in Lysosome-Enriched Fraction: Critical Involvement of Lysosomal Trapping in Quinacrine Uptake but Not Fluorescence-Labeled Verapamil Transport at Blood-Retinal Barrier. Pharmaceutics. 2020 Aug 8;12(8):747. doi: 10.3390/pharmaceutics12080747. [PubMed:32784408 ]
  3. Benito-Cuesta I, Ordonez-Gutierrez L, Wandosell F: AMPK activation does not enhance autophagy in neurons in contrast to MTORC1 inhibition: different impact on beta-amyloid clearance. Autophagy. 2021 Mar;17(3):656-671. doi: 10.1080/15548627.2020.1728095. Epub 2020 Feb 20. [PubMed:32075509 ]
  4. Bleloch JS, du Toit A, Gibhard L, Kimani S, Ballim RD, Lee M, Blanckenberg A, Mapolie S, Wiesner L, Loos B, Prince S: The palladacycle complex AJ-5 induces apoptotic cell death while reducing autophagic flux in rhabdomyosarcoma cells. Cell Death Discov. 2019 Jan 28;5:60. doi: 10.1038/s41420-019-0139-9. eCollection 2019. [PubMed:30701092 ]
  5. Lim SW, Shin YJ, Luo K, Quan Y, Ko EJ, Chung BH, Yang CW: Effect of Klotho on autophagy clearance in tacrolimus-induced renal injury. FASEB J. 2019 Feb;33(2):2694-2706. doi: 10.1096/fj.201800751R. Epub 2018 Oct 11. [PubMed:30307767 ]
  6. Schuchman RM, Vancini R, Piper A, Breuer D, Ribeiro M, Ferreira D, Magliocca J, Emmerich V, Hernandez R, Brown DT: Role of the vacuolar ATPase in the Alphavirus replication cycle. Heliyon. 2018 Jul 25;4(7):e00701. doi: 10.1016/j.heliyon.2018.e00701. eCollection 2018 Jul. [PubMed:30094371 ]
  7. Wang CY, Hong YH, Syu JS, Tsai YC, Liu XY, Chen TY, Su YM, Kuo PL, Lin YM, Teng YN: LRWD1 Regulates Microtubule Nucleation and Proper Cell Cycle Progression in the Human Testicular Embryonic Carcinoma Cells. J Cell Biochem. 2018 Jan;119(1):314-326. doi: 10.1002/jcb.26180. Epub 2017 Jun 27. [PubMed:28569402 ]
  8. Bhattarai G, Poudel SB, Kook SH, Lee JC: Anti-inflammatory, anti-osteoclastic, and antioxidant activities of genistein protect against alveolar bone loss and periodontal tissue degradation in a mouse model of periodontitis. J Biomed Mater Res A. 2017 Sep;105(9):2510-2521. doi: 10.1002/jbm.a.36109. Epub 2017 Jun 6. [PubMed:28509410 ]
  9. Liu J, Liu T, Mou H, Jia S, Huang C, Yan S, Lin J, Luo Y, Zhang J: An Isoquinolin-1(2H)-Imine Derivative Induces Cell Death via Generation of Reactive Oxygen Species and Activation of JNK in Human A549 Cancer Cells. J Cell Biochem. 2017 Dec;118(12):4394-4403. doi: 10.1002/jcb.26093. Epub 2017 May 31. [PubMed:28444898 ]
  10. Wang Y, Qin X, Paudel HK: Amyloid beta peptide promotes lysosomal degradation of clusterin via sortilin in hippocampal primary neurons. Neurobiol Dis. 2017 Jul;103:78-88. doi: 10.1016/j.nbd.2017.04.003. Epub 2017 Apr 8. [PubMed:28396259 ]
  11. Singh A, Chagtoo M, Tiwari S, George N, Chakravarti B, Khan S, Lakshmi S, Godbole MM: Inhibition of Inositol 1, 4, 5-Trisphosphate Receptor Induce Breast Cancer Cell Death Through Deregulated Autophagy and Cellular Bioenergetics. J Cell Biochem. 2017 Aug;118(8):2333-2346. doi: 10.1002/jcb.25891. Epub 2017 Apr 25. [PubMed:28106298 ]
  12. Moosavi MA, Sharifi M, Ghafary SM, Mohammadalipour Z, Khataee A, Rahmati M, Hajjaran S, Los MJ, Klonisch T, Ghavami S: Photodynamic N-TiO(2) Nanoparticle Treatment Induces Controlled ROS-mediated Autophagy and Terminal Differentiation of Leukemia Cells. Sci Rep. 2016 Oct 4;6:34413. doi: 10.1038/srep34413. [PubMed:27698385 ]
  13. Loos B, du Toit A, Hofmeyr JH: Defining and measuring autophagosome flux-concept and reality. Autophagy. 2014;10(11):2087-96. doi: 10.4161/15548627.2014.973338. [PubMed:25484088 ]
  14. Bengali Z, Satheshkumar PS, Moss B: Orthopoxvirus species and strain differences in cell entry. Virology. 2012 Nov 25;433(2):506-12. doi: 10.1016/j.virol.2012.08.044. Epub 2012 Sep 20. [PubMed:22999097 ]
  15. Du Z, Wan L, Yan Q, Weinbaum S, Weinstein AM, Wang T: Regulation of glomerulotubular balance: II: impact of angiotensin II on flow-dependent transport. Am J Physiol Renal Physiol. 2012 Dec 1;303(11):F1507-16. doi: 10.1152/ajprenal.00277.2012. Epub 2012 Sep 5. [PubMed:22952281 ]
  16. LOTUS database [Link]