Np mrd loader

Record Information
Version2.0
Created at2022-09-03 04:19:29 UTC
Updated at2022-09-03 04:19:30 UTC
NP-MRD IDNP0168504
Secondary Accession NumbersNone
Natural Product Identification
Common Namen-[(2r,3s,6r,7s,10r,11s)-7,11-bis[(2-{[(2,3-dihydroxyphenyl)(hydroxy)methylidene]amino}-1-hydroxyethylidene)amino]-2,6,10-trimethyl-4,8,12-trioxo-1,5,9-trioxacyclododecan-3-yl]-2-{[(2,3-dihydroxyphenyl)(hydroxy)methylidene]amino}ethanimidic acid
Description n-[(2r,3s,6r,7s,10r,11s)-7,11-bis[(2-{[(2,3-dihydroxyphenyl)(hydroxy)methylidene]amino}-1-hydroxyethylidene)amino]-2,6,10-trimethyl-4,8,12-trioxo-1,5,9-trioxacyclododecan-3-yl]-2-{[(2,3-dihydroxyphenyl)(hydroxy)methylidene]amino}ethanimidic acid is found in Apis cerana, Bacillus velezensis and Corynebacterium glutamicum. n-[(2r,3s,6r,7s,10r,11s)-7,11-bis[(2-{[(2,3-dihydroxyphenyl)(hydroxy)methylidene]amino}-1-hydroxyethylidene)amino]-2,6,10-trimethyl-4,8,12-trioxo-1,5,9-trioxacyclododecan-3-yl]-2-{[(2,3-dihydroxyphenyl)(hydroxy)methylidene]amino}ethanimidic acid was first documented in 2001 (PMID: 11112781).
Structure
Thumb
Synonyms
ValueSource
2,3-Dihydroxybenzoate-glycine-threonine trimeric esterChEBI
2,3-Dihydroxybenzoic acid-glycine-threonine trimeric esterGenerator
Chemical FormulaC39H42N6O18
Average Mass882.7890 Da
Monoisotopic Mass882.25556 Da
IUPAC NameN-[(2R,3S,6R,7S,10R,11S)-7,11-bis({2-[(2,3-dihydroxyphenyl)formamido]acetamido})-2,6,10-trimethyl-4,8,12-trioxo-1,5,9-trioxacyclododecan-3-yl]-2-[(2,3-dihydroxyphenyl)formamido]acetamide
Traditional NameN-[(2R,3S,6R,7S,10R,11S)-7,11-bis({2-[(2,3-dihydroxyphenyl)formamido]acetamido})-2,6,10-trimethyl-4,8,12-trioxo-1,5,9-trioxacyclododecan-3-yl]-2-[(2,3-dihydroxyphenyl)formamido]acetamide
CAS Registry NumberNot Available
SMILES
C[C@H]1OC(=O)[C@@H](NC(=O)CNC(=O)C2=CC=CC(O)=C2O)[C@@H](C)OC(=O)[C@@H](NC(=O)CNC(=O)C2=CC=CC(O)=C2O)[C@@H](C)OC(=O)[C@H]1NC(=O)CNC(=O)C1=CC=CC(O)=C1O
InChI Identifier
InChI=1S/C39H42N6O18/c1-16-28(43-25(49)13-40-34(55)19-7-4-10-22(46)31(19)52)37(58)62-18(3)30(45-27(51)15-42-36(57)21-9-6-12-24(48)33(21)54)39(60)63-17(2)29(38(59)61-16)44-26(50)14-41-35(56)20-8-5-11-23(47)32(20)53/h4-12,16-18,28-30,46-48,52-54H,13-15H2,1-3H3,(H,40,55)(H,41,56)(H,42,57)(H,43,49)(H,44,50)(H,45,51)/t16-,17-,18-,28+,29+,30+/m1/s1
InChI KeyRCQTVEFBFUNTGM-BDVHUIKKSA-N
Experimental Spectra
Not Available
Predicted Spectra
Spectrum TypeDescriptionDepositor IDDepositor OrganizationDepositorDeposition DateView
1D NMR13C NMR Spectrum (1D, 25 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 100 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 252 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 1000 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 50 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 200 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 75 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 300 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 101 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 400 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 126 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 500 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 151 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 600 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 176 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 700 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 201 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 800 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 226 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 900 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
Chemical Shift Submissions
Not Available
Species
Species of Origin
Species NameSourceReference
Apis ceranaLOTUS Database
Bacillus velezensisLOTUS Database
Corynebacterium glutamicumLOTUS Database
Chemical Taxonomy
Description Belongs to the class of organic compounds known as cyclic depsipeptides. These are natural or synthetic compounds having sequences of amino and hydroxy carboxylic acid residues (usually α-amino and α-hydroxy acids) connected in a ring. The residues are commonly but not necessarily regularly alternating.
KingdomOrganic compounds
Super ClassOrganic acids and derivatives
ClassPeptidomimetics
Sub ClassDepsipeptides
Direct ParentCyclic depsipeptides
Alternative Parents
Substituents
  • Cyclic depsipeptide
  • Alpha-amino acid ester
  • Macrolactam
  • Macrolide
  • N-acyl-alpha amino acid or derivatives
  • Alpha-amino acid or derivatives
  • Tricarboxylic acid or derivatives
  • Catechol
  • 1-hydroxy-4-unsubstituted benzenoid
  • 1-hydroxy-2-unsubstituted benzenoid
  • Phenol
  • Monocyclic benzene moiety
  • Benzenoid
  • Carboxylic acid ester
  • Lactone
  • Carboximidic acid
  • Carboximidic acid derivative
  • Carboxylic acid derivative
  • Oxacycle
  • Organoheterocyclic compound
  • Organic 1,3-dipolar compound
  • Propargyl-type 1,3-dipolar organic compound
  • Organic oxide
  • Hydrocarbon derivative
  • Organopnictogen compound
  • Carbonyl group
  • Organic nitrogen compound
  • Organic oxygen compound
  • Organooxygen compound
  • Organonitrogen compound
  • Aromatic heteromonocyclic compound
Molecular FrameworkAromatic heteromonocyclic compounds
External Descriptors
Physical Properties
StateNot Available
Experimental Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Predicted Properties
PropertyValueSource
logP1.86ALOGPS
logP0.2ChemAxon
logS-4.1ALOGPS
pKa (Strongest Acidic)7.83ChemAxon
pKa (Strongest Basic)-6.3ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count15ChemAxon
Hydrogen Donor Count12ChemAxon
Polar Surface Area374.88 ŲChemAxon
Rotatable Bond Count12ChemAxon
Refractivity209.54 m³·mol⁻¹ChemAxon
Polarizability85.34 ųChemAxon
Number of Rings4ChemAxon
BioavailabilityNoChemAxon
Rule of FiveNoChemAxon
Ghose FilterNoChemAxon
Veber's RuleNoChemAxon
MDDR-like RuleYesChemAxon
HMDB IDNot Available
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FoodDB IDNot Available
KNApSAcK IDNot Available
Chemspider ID111553
KEGG Compound IDC12219
BioCyc IDCPD-9984
BiGG IDNot Available
Wikipedia LinkBacillibactin
METLIN IDNot Available
PubChem Compound125349
PDB IDNot Available
ChEBI ID31432
Good Scents IDNot Available
References
General References
  1. May JJ, Wendrich TM, Marahiel MA: The dhb operon of Bacillus subtilis encodes the biosynthetic template for the catecholic siderophore 2,3-dihydroxybenzoate-glycine-threonine trimeric ester bacillibactin. J Biol Chem. 2001 Mar 9;276(10):7209-17. doi: 10.1074/jbc.M009140200. Epub 2000 Dec 8. [PubMed:11112781 ]
  2. Dertz EA, Xu J, Stintzi A, Raymond KN: Bacillibactin-mediated iron transport in Bacillus subtilis. J Am Chem Soc. 2006 Jan 11;128(1):22-3. doi: 10.1021/ja055898c. [PubMed:16390102 ]
  3. Miethke M, Westers H, Blom EJ, Kuipers OP, Marahiel MA: Iron starvation triggers the stringent response and induces amino acid biosynthesis for bacillibactin production in Bacillus subtilis. J Bacteriol. 2006 Dec;188(24):8655-7. doi: 10.1128/JB.01049-06. Epub 2006 Sep 29. [PubMed:17012385 ]
  4. Abergel RJ, Zawadzka AM, Hoette TM, Raymond KN: Enzymatic hydrolysis of trilactone siderophores: where chiral recognition occurs in enterobactin and bacillibactin iron transport. J Am Chem Soc. 2009 Sep 9;131(35):12682-92. doi: 10.1021/ja903051q. [PubMed:19673474 ]
  5. Wilson MK, Abergel RJ, Arceneaux JE, Raymond KN, Byers BR: Temporal production of the two Bacillus anthracis siderophores, petrobactin and bacillibactin. Biometals. 2010 Feb;23(1):129-34. doi: 10.1007/s10534-009-9272-x. Epub 2009 Oct 9. [PubMed:19816776 ]
  6. Lee JY, Passalacqua KD, Hanna PC, Sherman DH: Regulation of petrobactin and bacillibactin biosynthesis in Bacillus anthracis under iron and oxygen variation. PLoS One. 2011;6(6):e20777. doi: 10.1371/journal.pone.0020777. Epub 2011 Jun 6. [PubMed:21673962 ]
  7. Hertlein G, Muller S, Garcia-Gonzalez E, Poppinga L, Sussmuth RD, Genersch E: Production of the catechol type siderophore bacillibactin by the honey bee pathogen Paenibacillus larvae. PLoS One. 2014 Sep 19;9(9):e108272. doi: 10.1371/journal.pone.0108272. eCollection 2014. [PubMed:25237888 ]
  8. LOTUS database [Link]