Np mrd loader

Record Information
Version2.0
Created at2022-09-02 21:36:25 UTC
Updated at2022-09-02 21:36:25 UTC
NP-MRD IDNP0163068
Secondary Accession NumbersNone
Natural Product Identification
Common Name(2s,3r)-2-{[(2s)-2-amino-4-[(3s)-2,3-dihydroxy-4h-azet-3-yl]-1-hydroxybutylidene]amino}-3-hydroxybutanoic acid
DescriptionTabtoxin, also known as wildfire toxin, belongs to the class of organic compounds known as dipeptides. These are organic compounds containing a sequence of exactly two alpha-amino acids joined by a peptide bond. Tabtoxin is a secondary metabolite. Secondary metabolites are metabolically or physiologically non-essential metabolites that may serve a role as defense or signalling molecules. In some cases they are simply molecules that arise from the incomplete metabolism of other secondary metabolites. (2s,3r)-2-{[(2s)-2-amino-4-[(3s)-2,3-dihydroxy-4h-azet-3-yl]-1-hydroxybutylidene]amino}-3-hydroxybutanoic acid is found in Pseudomonas syringae. (2s,3r)-2-{[(2s)-2-amino-4-[(3s)-2,3-dihydroxy-4h-azet-3-yl]-1-hydroxybutylidene]amino}-3-hydroxybutanoic acid was first documented in 2011 (PMID: 22069758). Based on a literature review a significant number of articles have been published on tabtoxin (PMID: 35510837) (PMID: 29307827) (PMID: 28403565) (PMID: 29733155) (PMID: 23770908) (PMID: 22994681).
Structure
Thumb
Synonyms
ValueSource
(2S,3R)-2-({(2S)-2-amino-4-[(3S)-3-hydroxy-2-oxoazetidin-3-yl]butanoyl}amino)-3-hydroxybutanoic acidChEBI
N-((2S)-2-Amino-4-((3S)-3-hydroxy-2-oxo-3-azetidinyl)-1-oxobutyl)-L-threonineChEBI
Wildfire toxinChEBI
(2S,3R)-2-({(2S)-2-amino-4-[(3S)-3-hydroxy-2-oxoazetidin-3-yl]butanoyl}amino)-3-hydroxybutanoateGenerator
Chemical FormulaC11H19N3O6
Average Mass289.2880 Da
Monoisotopic Mass289.12739 Da
IUPAC Name(2S,3R)-2-{[(2S)-2-amino-4-[(3S)-3,4-dihydroxy-2,3-dihydroazet-3-yl]-1-hydroxybutylidene]amino}-3-hydroxybutanoic acid
Traditional Nametabtoxin
CAS Registry NumberNot Available
SMILES
C[C@@H](O)[C@H](N=C(O)[C@@H](N)CC[C@]1(O)CN=C1O)C(O)=O
InChI Identifier
InChI=1S/C11H19N3O6/c1-5(15)7(9(17)18)14-8(16)6(12)2-3-11(20)4-13-10(11)19/h5-7,15,20H,2-4,12H2,1H3,(H,13,19)(H,14,16)(H,17,18)/t5-,6+,7+,11+/m1/s1
InChI KeyBFSBNVPBVGFFCF-WDOVLDDZSA-N
Experimental Spectra
Not Available
Predicted Spectra
Spectrum TypeDescriptionDepositor IDDepositor OrganizationDepositorDeposition DateView
1D NMR13C NMR Spectrum (1D, 25 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 100 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 252 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 1000 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 50 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 200 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 75 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 300 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 101 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 400 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 126 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 500 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 151 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 600 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 176 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 700 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 201 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 800 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 226 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 900 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
Chemical Shift Submissions
Not Available
Species
Species of Origin
Species NameSourceReference
Pseudomonas syringaeLOTUS Database
Chemical Taxonomy
Description Belongs to the class of organic compounds known as dipeptides. These are organic compounds containing a sequence of exactly two alpha-amino acids joined by a peptide bond.
KingdomOrganic compounds
Super ClassOrganic acids and derivatives
ClassCarboxylic acids and derivatives
Sub ClassAmino acids, peptides, and analogues
Direct ParentDipeptides
Alternative Parents
Substituents
  • Alpha-dipeptide
  • Monobactam
  • N-acyl-l-alpha-amino acid
  • N-acyl-alpha-amino acid
  • N-acyl-alpha amino acid or derivatives
  • Alpha-amino acid amide
  • Alpha-amino acid or derivatives
  • Beta-hydroxy acid
  • Heterocyclic fatty acid
  • Hydroxy fatty acid
  • Short-chain hydroxy acid
  • Fatty amide
  • Hydroxy acid
  • N-acyl-amine
  • Fatty acyl
  • Fatty acid
  • Tertiary alcohol
  • Beta-lactam
  • Secondary carboxylic acid amide
  • Secondary alcohol
  • Amino acid or derivatives
  • Azetidine
  • Carboxamide group
  • Amino acid
  • Lactam
  • Organoheterocyclic compound
  • Azacycle
  • Monocarboxylic acid or derivatives
  • Carboxylic acid
  • Alcohol
  • Organooxygen compound
  • Amine
  • Carbonyl group
  • Organic nitrogen compound
  • Organopnictogen compound
  • Primary amine
  • Organic oxygen compound
  • Organonitrogen compound
  • Organic oxide
  • Hydrocarbon derivative
  • Primary aliphatic amine
  • Aliphatic heteromonocyclic compound
Molecular FrameworkAliphatic heteromonocyclic compounds
External DescriptorsNot Available
Physical Properties
StateNot Available
Experimental Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Predicted Properties
PropertyValueSource
logP-2.9ALOGPS
logP-4.8ChemAxon
logS-2.3ALOGPS
pKa (Strongest Acidic)1.03ChemAxon
pKa (Strongest Basic)9.31ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count9ChemAxon
Hydrogen Donor Count6ChemAxon
Polar Surface Area168.96 ŲChemAxon
Rotatable Bond Count7ChemAxon
Refractivity66.4 m³·mol⁻¹ChemAxon
Polarizability28.17 ųChemAxon
Number of Rings1ChemAxon
BioavailabilityYesChemAxon
Rule of FiveNoChemAxon
Ghose FilterNoChemAxon
Veber's RuleNoChemAxon
MDDR-like RuleNoChemAxon
HMDB IDNot Available
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FoodDB IDNot Available
KNApSAcK IDNot Available
Chemspider ID96964
KEGG Compound IDNot Available
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkTabtoxin
METLIN IDNot Available
PubChem Compound107817
PDB IDNot Available
ChEBI ID156429
Good Scents IDNot Available
References
General References
  1. Lyu J, Ushimaru R, Abe I: Characterization of Enzymes Catalyzing the Initial Steps of the beta-Lactam Tabtoxin Biosynthesis. Org Lett. 2022 May 13;24(18):3337-3341. doi: 10.1021/acs.orglett.2c00878. Epub 2022 May 5. [PubMed:35510837 ]
  2. Manning ME, Danson EJ, Calderone CT: Functional chararacterization of the enzymes TabB and TabD involved in tabtoxin biosynthesis by Pseudomonas syringae. Biochem Biophys Res Commun. 2018 Jan 29;496(1):212-217. doi: 10.1016/j.bbrc.2018.01.028. Epub 2018 Jan 4. [PubMed:29307827 ]
  3. Carezzano ME, Sotelo JP, Primo E, Reinoso EB, Paletti Rovey MF, Demo MS, Giordano WF, Oliva MLM: Inhibitory effect of Thymus vulgaris and Origanum vulgare essential oils on virulence factors of phytopathogenic Pseudomonas syringae strains. Plant Biol (Stuttg). 2017 Jul;19(4):599-607. doi: 10.1111/plb.12572. Epub 2017 May 14. [PubMed:28403565 ]
  4. Cheng DD, Sun JP, Chai Y, Zhu YY, Zhao M, Sun GY, Sun XB: [Effects of Pseudomonas syringae pv. tabaci infection on tobacco photosynthetic apparatus under light or dark conditions.]. Ying Yong Sheng Tai Xue Bao. 2016 Aug;27(8):2655-2662. doi: 10.13287/j.1001-9332.201608.006. [PubMed:29733155 ]
  5. Arai T, Arimura Y, Ishikura S, Kino K: L-amino acid ligase from Pseudomonas syringae producing tabtoxin can be used for enzymatic synthesis of various functional peptides. Appl Environ Microbiol. 2013 Aug;79(16):5023-9. doi: 10.1128/AEM.01003-13. Epub 2013 Jun 14. [PubMed:23770908 ]
  6. Wencewicz TA, Walsh CT: Pseudomonas syringae self-protection from tabtoxinine-beta-lactam by ligase TblF and acetylase Ttr. Biochemistry. 2012 Oct 2;51(39):7712-25. doi: 10.1021/bi3011384. Epub 2012 Sep 19. [PubMed:22994681 ]
  7. Kong HS, Roberts DP, Patterson CD, Kuehne SA, Heeb S, Lakshman DK, Lydon J: Effect of overexpressing rsmA from Pseudomonas aeruginosa on virulence of select phytotoxin-producing strains of P. syringae. Phytopathology. 2012 Jun;102(6):575-87. doi: 10.1094/PHYTO-09-11-0267. [PubMed:22568815 ]
  8. Arrebola E, Cazorla FM, Perez-Garcia A, de Vicente A: Chemical and metabolic aspects of antimetabolite toxins produced by Pseudomonas syringae pathovars. Toxins (Basel). 2011 Sep;3(9):1089-110. doi: 10.3390/toxins3091089. Epub 2011 Aug 31. [PubMed:22069758 ]
  9. Duke SO, Dayan FE: Modes of action of microbially-produced phytotoxins. Toxins (Basel). 2011 Aug;3(8):1038-1064. doi: 10.3390/toxins3081038. Epub 2011 Aug 22. [PubMed:22069756 ]
  10. Yang HJ, Lee JS, Cha JY, Baik HS: Negative regulation of pathogenesis in Pseudomonas syringae pv. tabaci 11528 by ATP-dependent Lon protease. Mol Cells. 2011 Oct;32(4):317-23. doi: 10.1007/s10059-011-1017-3. Epub 2011 Sep 6. [PubMed:21904881 ]
  11. LOTUS database [Link]