| Record Information |
|---|
| Version | 2.0 |
|---|
| Created at | 2022-09-02 14:00:27 UTC |
|---|
| Updated at | 2022-09-02 14:00:28 UTC |
|---|
| NP-MRD ID | NP0156754 |
|---|
| Secondary Accession Numbers | None |
|---|
| Natural Product Identification |
|---|
| Common Name | (4bs)-4-hydroxy-2-isopropyl-4b,8,8-trimethyl-6,7-dihydro-5h-phenanthren-3-one |
|---|
| Description | 15-Deoxyfuerstione belongs to the class of organic compounds known as diterpenoids. These are terpene compounds formed by four isoprene units. (4bs)-4-hydroxy-2-isopropyl-4b,8,8-trimethyl-6,7-dihydro-5h-phenanthren-3-one is found in Caryopteris clandonensis and Salvia moorcroftiana. (4bs)-4-hydroxy-2-isopropyl-4b,8,8-trimethyl-6,7-dihydro-5h-phenanthren-3-one was first documented in 2002 (PMID: 12385879). Based on a literature review a small amount of articles have been published on 15-Deoxyfuerstione (PMID: 33841524) (PMID: 34289771) (PMID: 20522992) (PMID: 22204139). |
|---|
| Structure | CC(C)C1=CC2=CC=C3C(C)(C)CCC[C@]3(C)C2=C(O)C1=O InChI=1S/C20H26O2/c1-12(2)14-11-13-7-8-15-19(3,4)9-6-10-20(15,5)16(13)18(22)17(14)21/h7-8,11-12,22H,6,9-10H2,1-5H3/t20-/m0/s1 |
|---|
| Synonyms | Not Available |
|---|
| Chemical Formula | C20H26O2 |
|---|
| Average Mass | 298.4260 Da |
|---|
| Monoisotopic Mass | 298.19328 Da |
|---|
| IUPAC Name | (4bS)-4-hydroxy-4b,8,8-trimethyl-2-(propan-2-yl)-3,4b,5,6,7,8-hexahydrophenanthren-3-one |
|---|
| Traditional Name | (4bS)-4-hydroxy-2-isopropyl-4b,8,8-trimethyl-6,7-dihydro-5H-phenanthren-3-one |
|---|
| CAS Registry Number | Not Available |
|---|
| SMILES | CC(C)C1=CC2=CC=C3C(C)(C)CCC[C@]3(C)C2=C(O)C1=O |
|---|
| InChI Identifier | InChI=1S/C20H26O2/c1-12(2)14-11-13-7-8-15-19(3,4)9-6-10-20(15,5)16(13)18(22)17(14)21/h7-8,11-12,22H,6,9-10H2,1-5H3/t20-/m0/s1 |
|---|
| InChI Key | RRCPSCYNWVOUBD-FQEVSTJZSA-N |
|---|
| Experimental Spectra |
|---|
|
| Not Available | | Predicted Spectra |
|---|
|
| | Spectrum Type | Description | Depositor ID | Depositor Organization | Depositor | Deposition Date | View |
|---|
| 1D NMR | 13C NMR Spectrum (1D, 25 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 100 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 252 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 1000 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 50 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 200 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 75 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 300 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 101 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 400 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 126 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 500 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 151 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 600 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 176 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 700 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 201 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 800 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 226 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 900 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum |
| | Chemical Shift Submissions |
|---|
|
| Not Available | | Species |
|---|
| Species of Origin | |
|---|
| Chemical Taxonomy |
|---|
| Description | Belongs to the class of organic compounds known as diterpenoids. These are terpene compounds formed by four isoprene units. |
|---|
| Kingdom | Organic compounds |
|---|
| Super Class | Lipids and lipid-like molecules |
|---|
| Class | Prenol lipids |
|---|
| Sub Class | Diterpenoids |
|---|
| Direct Parent | Diterpenoids |
|---|
| Alternative Parents | |
|---|
| Substituents | - Diterpenoid
- Abietane diterpenoid
- Phenanthrene
- Hydrophenanthrene
- Cyclic ketone
- Ketone
- Enol
- Organic oxygen compound
- Organic oxide
- Hydrocarbon derivative
- Organooxygen compound
- Carbonyl group
- Aliphatic homopolycyclic compound
|
|---|
| Molecular Framework | Aliphatic homopolycyclic compounds |
|---|
| External Descriptors | Not Available |
|---|
| Physical Properties |
|---|
| State | Not Available |
|---|
| Experimental Properties | | Property | Value | Reference |
|---|
| Melting Point | Not Available | Not Available | | Boiling Point | Not Available | Not Available | | Water Solubility | Not Available | Not Available | | LogP | Not Available | Not Available |
|
|---|
| Predicted Properties | |
|---|
| General References | - Hadavand Mirzaei H, Firuzi O, Jassbi AR: Diterpenoids from Roots of Salvia lachnocalyx; In-silico and In-vitro Toxicity against Human Cancer Cell Lines. Iran J Pharm Res. 2020 Fall;19(4):85-94. doi: 10.22037/ijpr.2019.15429.13095. [PubMed:33841524 ]
- Jassbi AR, Hadavand Mirzaei H, Firuzi O, Pirhadi S, Asadollahi M, Chandran JN, Schneider B: Cytotoxic abietane-type diterpenoids from roots of Salvia spinosa and their in Silico pharmacophore modeling. Nat Prod Res. 2021 Jul 22:1-6. doi: 10.1080/14786419.2021.1952202. [PubMed:34289771 ]
- Hannedouche S, Souchard JP, Jacquemond-Collet I, Moulis C: Molluscicidal and radical scavenging activity of quinones from the root bark of Caryopteris x clandonensis. Fitoterapia. 2002 Oct;73(6):520-2. doi: 10.1016/s0367-326x(02)00163-6. [PubMed:12385879 ]
- Tada M, Kurabe J, Yoshida T, Ohkanda T, Matsumoto Y: Syntheses and antibacterial activities of diterpene catechol derivatives with abietane, totarane and podocarpane skeletons against methicillin-resistant Staphylococcus aureus and Propionibacterium acnes. Chem Pharm Bull (Tokyo). 2010 Jun;58(6):818-24. doi: 10.1248/cpb.58.818. [PubMed:20522992 ]
- Kuzma L, Kisiel W, Krolicka A, Wysokinska H: Genetic transformation of Salvia austriaca by Agrobacterium rhizogenes and diterpenoid isolation. Pharmazie. 2011 Nov;66(11):904-7. [PubMed:22204139 ]
- LOTUS database [Link]
|
|---|