Record Information |
---|
Version | 2.0 |
---|
Created at | 2022-09-02 13:22:52 UTC |
---|
Updated at | 2022-09-02 13:22:52 UTC |
---|
NP-MRD ID | NP0156207 |
---|
Secondary Accession Numbers | None |
---|
Natural Product Identification |
---|
Common Name | 3-[2-hydroxy-5-(5-hydroxy-1h-indol-3-yl)-1h-pyrrol-3-yl]indol-2-one |
---|
Description | Violacein belongs to the class of organic compounds known as hydroxyindoles. These are organic compounds containing an indole moiety that carries a hydroxyl group. 3-[2-hydroxy-5-(5-hydroxy-1h-indol-3-yl)-1h-pyrrol-3-yl]indol-2-one is found in Chromobacterium violaceum. 3-[2-hydroxy-5-(5-hydroxy-1h-indol-3-yl)-1h-pyrrol-3-yl]indol-2-one was first documented in 2022 (PMID: 35624712). Based on a literature review a significant number of articles have been published on Violacein (PMID: 35884107) (PMID: 35956830) (PMID: 35910130) (PMID: 35907084) (PMID: 35876575) (PMID: 35875582). |
---|
Structure | OC1=C(C=C(N1)C1=CNC2=CC=C(O)C=C12)C1=C2C=CC=CC2=NC1=O InChI=1S/C20H13N3O3/c24-10-5-6-15-12(7-10)14(9-21-15)17-8-13(19(25)23-17)18-11-3-1-2-4-16(11)22-20(18)26/h1-9,21,23-25H |
---|
Synonyms | Value | Source |
---|
3-(1,2-Dihydro-5-(5-hydroxy-1H-indole-3-yl)-2-oxo-3H-pyrrol-3-ylidene)-1,3-dihydro-2H-indole-2-one | HMDB | (3E)-3-(1,2-Dihydro-5-(5-hydroxy-1H-indol-3-yl)-2-oxo-3H-pyrrol-3-ylidene)-1,3-dihydro-2H-indol-2-one | HMDB |
|
---|
Chemical Formula | C20H13N3O3 |
---|
Average Mass | 343.3420 Da |
---|
Monoisotopic Mass | 343.09569 Da |
---|
IUPAC Name | 3-[2-hydroxy-5-(5-hydroxy-1H-indol-3-yl)-1H-pyrrol-3-yl]-2H-indol-2-one |
---|
Traditional Name | 3-[2-hydroxy-5-(5-hydroxy-1H-indol-3-yl)-1H-pyrrol-3-yl]indol-2-one |
---|
CAS Registry Number | Not Available |
---|
SMILES | OC1=C(C=C(N1)C1=CNC2=CC=C(O)C=C12)C1=C2C=CC=CC2=NC1=O |
---|
InChI Identifier | InChI=1S/C20H13N3O3/c24-10-5-6-15-12(7-10)14(9-21-15)17-8-13(19(25)23-17)18-11-3-1-2-4-16(11)22-20(18)26/h1-9,21,23-25H |
---|
InChI Key | SHLJIZCPRXXHHZ-UHFFFAOYSA-N |
---|
Experimental Spectra |
---|
|
| Not Available | Predicted Spectra |
---|
|
| Spectrum Type | Description | Depositor ID | Depositor Organization | Depositor | Deposition Date | View |
---|
1D NMR | 13C NMR Spectrum (1D, 25 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 100 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 252 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 1000 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 50 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 200 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 75 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 300 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 101 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 400 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 126 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 500 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 151 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 600 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 176 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 700 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 201 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 800 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 226 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 900 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum |
| Chemical Shift Submissions |
---|
|
| Not Available | Species |
---|
Species of Origin | |
---|
Chemical Taxonomy |
---|
Description | Belongs to the class of organic compounds known as hydroxyindoles. These are organic compounds containing an indole moiety that carries a hydroxyl group. |
---|
Kingdom | Organic compounds |
---|
Super Class | Organoheterocyclic compounds |
---|
Class | Indoles and derivatives |
---|
Sub Class | Hydroxyindoles |
---|
Direct Parent | Hydroxyindoles |
---|
Alternative Parents | |
---|
Substituents | - Hydroxyindole
- Indole
- 1-hydroxy-2-unsubstituted benzenoid
- Benzenoid
- Substituted pyrrole
- Heteroaromatic compound
- Pyrrole
- N-acylimine
- Azacycle
- Carboxylic acid derivative
- Organic nitrogen compound
- Organic oxygen compound
- Organopnictogen compound
- Organic oxide
- Hydrocarbon derivative
- Organooxygen compound
- Organonitrogen compound
- Carbonyl group
- Aromatic heteropolycyclic compound
|
---|
Molecular Framework | Aromatic heteropolycyclic compounds |
---|
External Descriptors | Not Available |
---|
Physical Properties |
---|
State | Not Available |
---|
Experimental Properties | Property | Value | Reference |
---|
Melting Point | Not Available | Not Available | Boiling Point | Not Available | Not Available | Water Solubility | Not Available | Not Available | LogP | Not Available | Not Available |
|
---|
Predicted Properties | |
---|
General References | - Cheng KC, Hsiao HC, Hou YC, Hsieh CW, Hsu HY, Chen HY, Lin SP: Improvement in Violacein Production by Utilizing Formic Acid to Induce Quorum Sensing in Chromobacterium violaceum. Antioxidants (Basel). 2022 Apr 26;11(5). pii: antiox11050849. doi: 10.3390/antiox11050849. [PubMed:35624712 ]
- Awadelkareem AM, Al-Shammari E, Elkhalifa AO, Adnan M, Siddiqui AJ, Patel M, Khan MI, Mehmood K, Ashfaq F, Badraoui R, Ashraf SA: Biosynthesized Silver Nanoparticles from Eruca sativa Miller Leaf Extract Exhibits Antibacterial, Antioxidant, Anti-Quorum-Sensing, Antibiofilm, and Anti-Metastatic Activities. Antibiotics (Basel). 2022 Jun 25;11(7):853. doi: 10.3390/antibiotics11070853. [PubMed:35884107 ]
- Li YL, Chu ZY, Liu GM, Yang SQ, Zeng H: The Derived Components of Gnaphalium hypoleucum DC. Reduce Quorum Sensing of Chromobacterium violaceum. Molecules. 2022 Jul 30;27(15):4881. doi: 10.3390/molecules27154881. [PubMed:35956830 ]
- Kachhadia R, Kapadia C, Singh S, Gandhi K, Jajda H, Alfarraj S, Ansari MJ, Danish S, Datta R: Quorum Sensing Inhibitory and Quenching Activity of Bacillus cereus RC1 Extracts on Soft Rot-Causing Bacteria Lelliottia amnigena. ACS Omega. 2022 Jul 11;7(29):25291-25308. doi: 10.1021/acsomega.2c02202. eCollection 2022 Jul 26. [PubMed:35910130 ]
- Alibi S, Selma WB, Mansour HB, Navas J: Activity of Essential Oils Against Multidrug-Resistant Salmonella enteritidis. Curr Microbiol. 2022 Jul 30;79(9):273. doi: 10.1007/s00284-022-02938-x. [PubMed:35907084 ]
- Alves JA, Leal FC, Previato-Mello M, da Silva Neto JF: A Quorum Sensing-Regulated Type VI Secretion System Containing Multiple Nonredundant VgrG Proteins Is Required for Interbacterial Competition in Chromobacterium violaceum. Microbiol Spectr. 2022 Aug 31;10(4):e0157622. doi: 10.1128/spectrum.01576-22. Epub 2022 Jul 25. [PubMed:35876575 ]
- Kumar V, Kashyap P, Kumar S, Thakur V, Kumar S, Singh D: Multiple Adaptive Strategies of Himalayan Iodobacter sp. PCH194 to High-Altitude Stresses. Front Microbiol. 2022 Jul 6;13:881873. doi: 10.3389/fmicb.2022.881873. eCollection 2022. [PubMed:35875582 ]
- Rivero Berti I, Rodenak-Kladniew BE, Katz SF, Arrua EC, Alvarez VA, Duran N, Castro GR: Enzymatic Active Release of Violacein Present in Nanostructured Lipid Carrier by Lipase Encapsulated in 3D-Bioprinted Chitosan-Hydroxypropyl Methylcellulose Matrix With Anticancer Activity. Front Chem. 2022 Jul 7;10:914126. doi: 10.3389/fchem.2022.914126. eCollection 2022. [PubMed:35873038 ]
- Faria AVS, Fonseca EMB, Fernandes-Oliveira PS, de Lima TI, Clerici SP, Justo GZ, Silveira LR, Duran N, Ferreira-Halder CV: Violacein switches off low molecular weight tyrosine phosphatase and rewires mitochondria in colorectal cancer cells. Bioorg Chem. 2022 Oct;127:106000. doi: 10.1016/j.bioorg.2022.106000. Epub 2022 Jul 8. [PubMed:35853296 ]
- Doganci MA, Ay Sal F, Guler HI, Kati H, Ceylan E, Belduz AO, Bozdal G, Yayli N, Canakci S: Investigation of potential inhibitor properties of violacein against HIV-1 RT and CoV-2 Spike RBD:ACE-2. World J Microbiol Biotechnol. 2022 Jul 14;38(9):161. doi: 10.1007/s11274-022-03350-0. [PubMed:35834025 ]
- Hui CY, Guo Y, Zhu DL, Li LM, Yi J, Zhang NX: Metabolic engineering of the violacein biosynthetic pathway toward a low-cost, minimal-equipment lead biosensor. Biosens Bioelectron. 2022 Oct 15;214:114531. doi: 10.1016/j.bios.2022.114531. Epub 2022 Jul 6. [PubMed:35810697 ]
- Karuppiah V, Seralathan M: Quorum sensing inhibitory potential of vaccenic acid against Chromobacterium violaceum and methicillin-resistant Staphylococcus aureus. World J Microbiol Biotechnol. 2022 Jun 27;38(8):146. doi: 10.1007/s11274-022-03335-z. [PubMed:35759150 ]
- Kanelli M, Saleh B, Webster TJ, Vouyiouka S, Topakas E: Co-Encapsulation of Violacein and Iron Oxide in Poly(lactic acid) Nanoparticles for Simultaneous Antibacterial and Anticancer Applications. J Biomed Nanotechnol. 2022 Mar 1;18(3):729-739. doi: 10.1166/jbn.2022.3305. [PubMed:35715912 ]
- Duran N, Castro GR, Portela RWD, Favaro WJ, Duran M, Tasic L, Nakazato G: Violacein and its antifungal activity: comments and potentialities. Lett Appl Microbiol. 2022 Oct;75(4):796-803. doi: 10.1111/lam.13760. Epub 2022 Jun 22. [PubMed:35687081 ]
- de Souza Oliveira PF, Faria AVS, Clerici SP, Akagi EM, Carvalho HF, Justo GZ, Duran N, Ferreira-Halder CV: Violacein negatively modulates the colorectal cancer survival and epithelial-mesenchymal transition. J Cell Biochem. 2022 Jul;123(7):1247-1258. doi: 10.1002/jcb.30295. Epub 2022 Jun 6. [PubMed:35661241 ]
- Ulusoy S, B Akalin R, Cevikbas H, Berisha A, Oral A, Bosgelmez-Tinaz G: Zeolite 4A as a jammer of bacterial communication in Chromobacterium violaceum and Pseudomonas aeruginosa. Future Microbiol. 2022 Jul;17:861-871. doi: 10.2217/fmb-2021-0174. Epub 2022 Jun 6. [PubMed:35658574 ]
- Pothoulakis G, Nguyen MTA, Andersen ES: Utilizing RNA origami scaffolds in Saccharomyces cerevisiae for dCas9-mediated transcriptional control. Nucleic Acids Res. 2022 Jul 8;50(12):7176-7187. doi: 10.1093/nar/gkac470. [PubMed:35648481 ]
- Dahlem C, Chanda S, Hemmer J, Schymik HS, Kohlstedt M, Wittmann C, Kiemer AK: Characterization of Anti-Cancer Activities of Violacein: Actions on Tumor Cells and the Tumor Microenvironment. Front Oncol. 2022 May 11;12:872223. doi: 10.3389/fonc.2022.872223. eCollection 2022. [PubMed:35646663 ]
- Chernogor L, Bakhvalova K, Belikova A, Belikov S: Isolation and Properties of the Bacterial Strain Janthinobacterium sp. SLB01. Microorganisms. 2022 May 23;10(5):1071. doi: 10.3390/microorganisms10051071. [PubMed:35630513 ]
- Patel M, Siddiqui AJ, Ashraf SA, Surti M, Awadelkareem AM, Snoussi M, Hamadou WS, Bardakci F, Jamal A, Jahan S, Sachidanandan M, Adnan M: Lactiplantibacillus plantarum-Derived Biosurfactant Attenuates Quorum Sensing-Mediated Virulence and Biofilm Formation in Pseudomonas aeruginosa and Chromobacterium violaceum. Microorganisms. 2022 May 13;10(5):1026. doi: 10.3390/microorganisms10051026. [PubMed:35630468 ]
- LOTUS database [Link]
|
---|