Np mrd loader

Record Information
Version2.0
Created at2022-09-02 12:06:05 UTC
Updated at2022-09-02 12:06:05 UTC
NP-MRD IDNP0155095
Secondary Accession NumbersNone
Natural Product Identification
Common Name(+)-5-epi-aristolochene
Description(+)-5-Epi-aristolochene belongs to the class of organic compounds known as eremophilane, 8,9-secoeremophilane and furoeremophilane sesquiterpenoids. These are sesquiterpenoids with a structure based either on the eremophilane skeleton, its 8,9-seco derivative, or the furoeremophilane skeleton. Eremophilanes have been shown to be derived from eudesmanes by migration of the methyl group at C-10 to C-5. Thus, (+)-5-epi-aristolochene is considered to be an isoprenoid. (+)-5-epi-aristolochene is found in Nicotiana tabacum. (+)-5-epi-aristolochene was first documented in 2016 (PMID: 27328867). Based on a literature review a significant number of articles have been published on (+)-5-epi-aristolochene (PMID: 34264250) (PMID: 32694584) (PMID: 31864296) (PMID: 31534022) (PMID: 31294452) (PMID: 30919065).
Structure
Thumb
Synonyms
ValueSource
Epi-aristolocheneChEBI
(+)-5-EpiaristolocheneKegg
5-Epi-aristolocheneKegg
Chemical FormulaC15H24
Average Mass204.3570 Da
Monoisotopic Mass204.18780 Da
IUPAC Name(4R,4aR,6R)-4,4a-dimethyl-6-(prop-1-en-2-yl)-1,2,3,4,4a,5,6,7-octahydronaphthalene
Traditional Name(+)-5-epi-aristolochene
CAS Registry NumberNot Available
SMILES
C[C@@H]1CCCC2=CC[C@H](C[C@]12C)C(C)=C
InChI Identifier
InChI=1S/C15H24/c1-11(2)13-8-9-14-7-5-6-12(3)15(14,4)10-13/h9,12-13H,1,5-8,10H2,2-4H3/t12-,13-,15-/m1/s1
InChI KeyYONHOSLUBQJXPR-UMVBOHGHSA-N
Experimental Spectra
Not Available
Predicted Spectra
Spectrum TypeDescriptionDepositor IDDepositor OrganizationDepositorDeposition DateView
1D NMR13C NMR Spectrum (1D, 25 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 100 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 252 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 1000 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 50 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 200 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 75 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 300 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 101 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 400 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 126 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 500 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 151 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 600 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 176 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 700 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 201 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 800 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 226 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 900 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
Chemical Shift Submissions
Not Available
Species
Species of Origin
Species NameSourceReference
Nicotiana tabacumLOTUS Database
Chemical Taxonomy
Description Belongs to the class of organic compounds known as eremophilane, 8,9-secoeremophilane and furoeremophilane sesquiterpenoids. These are sesquiterpenoids with a structure based either on the eremophilane skeleton, its 8,9-seco derivative, or the furoeremophilane skeleton. Eremophilanes have been shown to be derived from eudesmanes by migration of the methyl group at C-10 to C-5.
KingdomOrganic compounds
Super ClassLipids and lipid-like molecules
ClassPrenol lipids
Sub ClassSesquiterpenoids
Direct ParentEremophilane, 8,9-secoeremophilane and furoeremophilane sesquiterpenoids
Alternative Parents
Substituents
  • Eremophilane sesquiterpenoid
  • Branched unsaturated hydrocarbon
  • Polycyclic hydrocarbon
  • Cyclic olefin
  • Unsaturated aliphatic hydrocarbon
  • Unsaturated hydrocarbon
  • Olefin
  • Hydrocarbon
  • Aliphatic homopolycyclic compound
Molecular FrameworkAliphatic homopolycyclic compounds
External Descriptors
Physical Properties
StateNot Available
Experimental Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Predicted Properties
PropertyValueSource
logP5.85ALOGPS
logP4.52ChemAxon
logS-4.9ALOGPS
Physiological Charge0ChemAxon
Hydrogen Acceptor Count0ChemAxon
Hydrogen Donor Count0ChemAxon
Polar Surface Area0 ŲChemAxon
Rotatable Bond Count1ChemAxon
Refractivity67.45 m³·mol⁻¹ChemAxon
Polarizability25.9 ųChemAxon
Number of Rings2ChemAxon
BioavailabilityYesChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleNoChemAxon
HMDB IDNot Available
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FoodDB IDNot Available
KNApSAcK IDNot Available
Chemspider ID4574150
KEGG Compound IDC19708
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkNot Available
METLIN IDNot Available
PubChem Compound5460659
PDB IDNot Available
ChEBI ID23925
Good Scents IDNot Available
References
General References
  1. Huang JQ, Li DM, Li JX, Lin JL, Tian X, Wang LJ, Chen XY, Fang X: 1,10/1,11-Cyclization catalyzed by diverged plant sesquiterpene synthases is dependent on a single residue. Org Biomol Chem. 2021 Aug 5;19(30):6650-6656. doi: 10.1039/d1ob00827g. [PubMed:34264250 ]
  2. Baba VY, Powell AF, Ivamoto-Suzuki ST, Pereira LFP, Vanzela ALL, Giacomin RM, Strickler SR, Mueller LA, Rodrigues R, Goncalves LSA: Capsidiol-related genes are highly expressed in response to Colletotrichum scovillei during Capsicum annuum fruit development stages. Sci Rep. 2020 Jul 21;10(1):12048. doi: 10.1038/s41598-020-68949-5. [PubMed:32694584 ]
  3. Kojima T, Asakura N, Hasegawa S, Hirasawa T, Mizuno Y, Takemoto D, Katou S: Transcriptional induction of capsidiol synthesis genes by wounding can promote pathogen signal-induced capsidiol synthesis. BMC Plant Biol. 2019 Dec 21;19(1):576. doi: 10.1186/s12870-019-2204-1. [PubMed:31864296 ]
  4. Nguyen TD, Kwon M, Kim SU, Fischer C, Ro DK: Catalytic Plasticity of Germacrene A Oxidase Underlies Sesquiterpene Lactone Diversification. Plant Physiol. 2019 Nov;181(3):945-960. doi: 10.1104/pp.19.00629. Epub 2019 Sep 18. [PubMed:31534022 ]
  5. Song N, Ma L, Wang W, Sun H, Wang L, Baldwin IT, Wu J: An ERF2-like transcription factor regulates production of the defense sesquiterpene capsidiol upon Alternaria alternata infection. J Exp Bot. 2019 Oct 24;70(20):5895-5908. doi: 10.1093/jxb/erz327. [PubMed:31294452 ]
  6. Cai Y, Whitehead P, Chappell J, Chapman KD: Mouse lipogenic proteins promote the co-accumulation of triacylglycerols and sesquiterpenes in plant cells. Planta. 2019 Jul;250(1):79-94. doi: 10.1007/s00425-019-03148-9. Epub 2019 Mar 27. [PubMed:30919065 ]
  7. Koo HJ, Vickery CR, Xu Y, Louie GV, O'Maille PE, Bowman M, Nartey CM, Burkart MD, Noel JP: Biosynthetic potential of sesquiterpene synthases: product profiles of Egyptian Henbane premnaspirodiene synthase and related mutants. J Antibiot (Tokyo). 2016 Jul;69(7):524-33. doi: 10.1038/ja.2016.68. Epub 2016 Jun 22. [PubMed:27328867 ]
  8. Imano S, Fushimi M, Camagna M, Tsuyama-Koike A, Mori H, Ashida A, Tanaka A, Sato I, Chiba S, Kawakita K, Ojika M, Takemoto D: AP2/ERF Transcription Factor NbERF-IX-33 Is Involved in the Regulation of Phytoalexin Production for the Resistance of Nicotiana benthamiana to Phytophthora infestans. Front Plant Sci. 2022 Jan 27;12:821574. doi: 10.3389/fpls.2021.821574. eCollection 2021. [PubMed:35154216 ]
  9. Lee HA, Kim S, Kim S, Choi D: Expansion of sesquiterpene biosynthetic gene clusters in pepper confers nonhost resistance to the Irish potato famine pathogen. New Phytol. 2017 Aug;215(3):1132-1143. doi: 10.1111/nph.14637. Epub 2017 Jun 20. [PubMed:28631815 ]
  10. Shibata Y, Ojika M, Sugiyama A, Yazaki K, Jones DA, Kawakita K, Takemoto D: The Full-Size ABCG Transporters Nb-ABCG1 and Nb-ABCG2 Function in Pre- and Postinvasion Defense against Phytophthora infestans in Nicotiana benthamiana. Plant Cell. 2016 May;28(5):1163-81. doi: 10.1105/tpc.15.00721. Epub 2016 Apr 21. [PubMed:27102667 ]
  11. LOTUS database [Link]