Np mrd loader

Record Information
Version2.0
Created at2022-09-02 08:56:12 UTC
Updated at2022-09-02 08:56:12 UTC
NP-MRD IDNP0152460
Secondary Accession NumbersNone
Natural Product Identification
Common Name(3s,6z,8e,11s,15r,17s)-15-amino-3-[(1e,3e,5e)-7-(dimethylamino)-2,5-dimethylhepta-1,3,5-trien-1-yl]-9,11,17-trimethyl-4,12-dioxa-20-thia-21-azabicyclo[16.2.1]henicosa-1(21),6,8,18-tetraene-5,13-dione
DescriptionPateamine belongs to the class of organic compounds known as macrolides and analogues. These are organic compounds containing a lactone ring of at least twelve members. Pateamine is a secondary metabolite. Secondary metabolites are metabolically or physiologically non-essential metabolites that may serve a role as defense or signalling molecules. In some cases they are simply molecules that arise from the incomplete metabolism of other secondary metabolites. (3s,6z,8e,11s,15r,17s)-15-amino-3-[(1e,3e,5e)-7-(dimethylamino)-2,5-dimethylhepta-1,3,5-trien-1-yl]-9,11,17-trimethyl-4,12-dioxa-20-thia-21-azabicyclo[16.2.1]henicosa-1(21),6,8,18-tetraene-5,13-dione is found in Apis cerana. (3s,6z,8e,11s,15r,17s)-15-amino-3-[(1e,3e,5e)-7-(dimethylamino)-2,5-dimethylhepta-1,3,5-trien-1-yl]-9,11,17-trimethyl-4,12-dioxa-20-thia-21-azabicyclo[16.2.1]henicosa-1(21),6,8,18-tetraene-5,13-dione was first documented in 2020 (PMID: 33104139). Based on a literature review a significant number of articles have been published on pateamine (PMID: 33507727) (PMID: 34214439) (PMID: 33412110) (PMID: 32209692) (PMID: 32014999) (PMID: 32008367).
Structure
Thumb
Synonyms
ValueSource
(-)-PateamineChEBI
Pateamine aChEBI
Chemical FormulaC31H45N3O4S
Average Mass555.7800 Da
Monoisotopic Mass555.31308 Da
IUPAC Name(3S,6Z,8E,11S,15R,17S)-15-amino-3-[(1E,3E,5E)-7-(dimethylamino)-2,5-dimethylhepta-1,3,5-trien-1-yl]-9,11,17-trimethyl-4,12-dioxa-20-thia-21-azabicyclo[16.2.1]henicosa-1(21),6,8,18-tetraene-5,13-dione
Traditional Name(3S,6Z,8E,11S,15R,17S)-15-amino-3-[(1E,3E,5E)-7-(dimethylamino)-2,5-dimethylhepta-1,3,5-trien-1-yl]-9,11,17-trimethyl-4,12-dioxa-20-thia-21-azabicyclo[16.2.1]henicosa-1(21),6,8,18-tetraene-5,13-dione
CAS Registry NumberNot Available
SMILES
C[C@H]1C\C(C)=C\C=C/C(=O)O[C@@H](CC2=NC(=CS2)[C@@H](C)C[C@@H](N)CC(=O)O1)\C=C(/C)\C=C\C(\C)=C\CN(C)C
InChI Identifier
InChI=1S/C31H45N3O4S/c1-21(13-14-34(6)7)11-12-23(3)16-27-19-29-33-28(20-39-29)24(4)17-26(32)18-31(36)37-25(5)15-22(2)9-8-10-30(35)38-27/h8-13,16,20,24-27H,14-15,17-19,32H2,1-7H3/b10-8-,12-11+,21-13+,22-9+,23-16+/t24-,25-,26+,27+/m0/s1
InChI KeyDSPNTLCJTJBXTD-IRNRRZNASA-N
Experimental Spectra
Not Available
Predicted Spectra
Spectrum TypeDescriptionDepositor IDDepositor OrganizationDepositorDeposition DateView
1D NMR13C NMR Spectrum (1D, 25 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 100 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 252 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 1000 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 50 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 200 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 75 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 300 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 101 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 400 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 126 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 500 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 151 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 600 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 176 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 700 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 201 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 800 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 226 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 900 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
Chemical Shift Submissions
Not Available
Species
Species of Origin
Species NameSourceReference
Apis ceranaLOTUS Database
Chemical Taxonomy
Description Belongs to the class of organic compounds known as macrolides and analogues. These are organic compounds containing a lactone ring of at least twelve members.
KingdomOrganic compounds
Super ClassPhenylpropanoids and polyketides
ClassMacrolides and analogues
Sub ClassNot Available
Direct ParentMacrolides and analogues
Alternative Parents
Substituents
  • Macrolide
  • Aralkylamine
  • Dicarboxylic acid or derivatives
  • Azole
  • Thiazole
  • Heteroaromatic compound
  • Enoate ester
  • Alpha,beta-unsaturated carboxylic ester
  • Amino acid or derivatives
  • Carboxylic acid ester
  • Lactone
  • Tertiary amine
  • Tertiary aliphatic amine
  • Carboxylic acid derivative
  • Oxacycle
  • Azacycle
  • Organoheterocyclic compound
  • Organic nitrogen compound
  • Primary amine
  • Organooxygen compound
  • Organonitrogen compound
  • Primary aliphatic amine
  • Organic oxide
  • Organic oxygen compound
  • Amine
  • Hydrocarbon derivative
  • Carbonyl group
  • Aromatic heteropolycyclic compound
Molecular FrameworkAromatic heteropolycyclic compounds
External DescriptorsNot Available
Physical Properties
StateNot Available
Experimental Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Predicted Properties
PropertyValueSource
logP5.08ALOGPS
logP5.05ChemAxon
logS-5.6ALOGPS
pKa (Strongest Basic)9.51ChemAxon
Physiological Charge2ChemAxon
Hydrogen Acceptor Count5ChemAxon
Hydrogen Donor Count1ChemAxon
Polar Surface Area94.75 ŲChemAxon
Rotatable Bond Count5ChemAxon
Refractivity163.28 m³·mol⁻¹ChemAxon
Polarizability64.33 ųChemAxon
Number of Rings2ChemAxon
BioavailabilityNoChemAxon
Rule of FiveNoChemAxon
Ghose FilterNoChemAxon
Veber's RuleNoChemAxon
MDDR-like RuleNoChemAxon
HMDB IDNot Available
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FoodDB IDNot Available
KNApSAcK IDNot Available
Chemspider ID25053851
KEGG Compound IDC19917
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkNot Available
METLIN IDNot Available
PubChem Compound10053416
PDB IDNot Available
ChEBI ID134184
Good Scents IDNot Available
References
General References
  1. Furstner A: Lessons from Natural Product Total Synthesis: Macrocyclization and Postcyclization Strategies. Acc Chem Res. 2021 Feb 16;54(4):861-874. doi: 10.1021/acs.accounts.0c00759. Epub 2021 Jan 28. [PubMed:33507727 ]
  2. Ingolia NT: eIF4A inhibitors PatA and RocA stack the deck against translation. Structure. 2021 Jul 1;29(7):638-639. doi: 10.1016/j.str.2021.06.009. [PubMed:34214439 ]
  3. Naineni SK, Liang J, Hull K, Cencic R, Zhu M, Northcote P, Teesdale-Spittle P, Romo D, Nagar B, Pelletier J: Functional mimicry revealed by the crystal structure of an eIF4A:RNA complex bound to the interfacial inhibitor, desmethyl pateamine A. Cell Chem Biol. 2021 Jun 17;28(6):825-834.e6. doi: 10.1016/j.chembiol.2020.12.006. Epub 2021 Jan 6. [PubMed:33412110 ]
  4. Truax NJ, Romo D: Bridging the gap between natural product synthesis and drug discovery. Nat Prod Rep. 2020 Nov 1;37(11):1436-1453. doi: 10.1039/d0np00048e. Epub 2020 Oct 26. [PubMed:33104139 ]
  5. Storey MA, Andreassend SK, Bracegirdle J, Brown A, Keyzers RA, Ackerley DF, Northcote PT, Owen JG: Metagenomic Exploration of the Marine Sponge Mycale hentscheli Uncovers Multiple Polyketide-Producing Bacterial Symbionts. mBio. 2020 Mar 24;11(2):e02997-19. doi: 10.1128/mBio.02997-19. [PubMed:32209692 ]
  6. Naineni SK, Itoua Maiga R, Cencic R, Putnam AA, Amador LA, Rodriguez AD, Jankowsky E, Pelletier J: A comparative study of small molecules targeting eIF4A. RNA. 2020 May;26(5):541-549. doi: 10.1261/rna.072884.119. Epub 2020 Feb 3. [PubMed:32014999 ]
  7. Kommaraju SS, Aulicino J, Gobbooru S, Li J, Zhu M, Romo D, Low WK: Investigation of the mechanism of action of a potent pateamine A analog, des-methyl, des-amino pateamine A (DMDAPatA). Biochem Cell Biol. 2020 Aug;98(4):502-510. doi: 10.1139/bcb-2019-0307. Epub 2020 Feb 2. [PubMed:32008367 ]
  8. Adedoja AN, McMahan T, Neal JP, Hamal Dhakal S, Jois S, Romo D, Hull K, Garlapati S: Translation initiation factors GleIF4E2 and GleIF4A can interact directly with the components of the pre-initiation complex to facilitate translation initiation in Giardia lamblia. Mol Biochem Parasitol. 2020 Mar;236:111258. doi: 10.1016/j.molbiopara.2020.111258. Epub 2020 Jan 20. [PubMed:31968220 ]
  9. LOTUS database [Link]