| Record Information |
|---|
| Version | 2.0 |
|---|
| Created at | 2022-09-02 08:56:12 UTC |
|---|
| Updated at | 2022-09-02 08:56:12 UTC |
|---|
| NP-MRD ID | NP0152460 |
|---|
| Secondary Accession Numbers | None |
|---|
| Natural Product Identification |
|---|
| Common Name | (3s,6z,8e,11s,15r,17s)-15-amino-3-[(1e,3e,5e)-7-(dimethylamino)-2,5-dimethylhepta-1,3,5-trien-1-yl]-9,11,17-trimethyl-4,12-dioxa-20-thia-21-azabicyclo[16.2.1]henicosa-1(21),6,8,18-tetraene-5,13-dione |
|---|
| Description | Pateamine belongs to the class of organic compounds known as macrolides and analogues. These are organic compounds containing a lactone ring of at least twelve members. Pateamine is a secondary metabolite. Secondary metabolites are metabolically or physiologically non-essential metabolites that may serve a role as defense or signalling molecules. In some cases they are simply molecules that arise from the incomplete metabolism of other secondary metabolites. (3s,6z,8e,11s,15r,17s)-15-amino-3-[(1e,3e,5e)-7-(dimethylamino)-2,5-dimethylhepta-1,3,5-trien-1-yl]-9,11,17-trimethyl-4,12-dioxa-20-thia-21-azabicyclo[16.2.1]henicosa-1(21),6,8,18-tetraene-5,13-dione is found in Apis cerana. (3s,6z,8e,11s,15r,17s)-15-amino-3-[(1e,3e,5e)-7-(dimethylamino)-2,5-dimethylhepta-1,3,5-trien-1-yl]-9,11,17-trimethyl-4,12-dioxa-20-thia-21-azabicyclo[16.2.1]henicosa-1(21),6,8,18-tetraene-5,13-dione was first documented in 2020 (PMID: 33104139). Based on a literature review a significant number of articles have been published on pateamine (PMID: 33507727) (PMID: 34214439) (PMID: 33412110) (PMID: 32209692) (PMID: 32014999) (PMID: 32008367). |
|---|
| Structure | C[C@H]1C\C(C)=C\C=C/C(=O)O[C@@H](CC2=NC(=CS2)[C@@H](C)C[C@@H](N)CC(=O)O1)\C=C(/C)\C=C\C(\C)=C\CN(C)C InChI=1S/C31H45N3O4S/c1-21(13-14-34(6)7)11-12-23(3)16-27-19-29-33-28(20-39-29)24(4)17-26(32)18-31(36)37-25(5)15-22(2)9-8-10-30(35)38-27/h8-13,16,20,24-27H,14-15,17-19,32H2,1-7H3/b10-8-,12-11+,21-13+,22-9+,23-16+/t24-,25-,26+,27+/m0/s1 |
|---|
| Synonyms | | Value | Source |
|---|
| (-)-Pateamine | ChEBI | | Pateamine a | ChEBI |
|
|---|
| Chemical Formula | C31H45N3O4S |
|---|
| Average Mass | 555.7800 Da |
|---|
| Monoisotopic Mass | 555.31308 Da |
|---|
| IUPAC Name | (3S,6Z,8E,11S,15R,17S)-15-amino-3-[(1E,3E,5E)-7-(dimethylamino)-2,5-dimethylhepta-1,3,5-trien-1-yl]-9,11,17-trimethyl-4,12-dioxa-20-thia-21-azabicyclo[16.2.1]henicosa-1(21),6,8,18-tetraene-5,13-dione |
|---|
| Traditional Name | (3S,6Z,8E,11S,15R,17S)-15-amino-3-[(1E,3E,5E)-7-(dimethylamino)-2,5-dimethylhepta-1,3,5-trien-1-yl]-9,11,17-trimethyl-4,12-dioxa-20-thia-21-azabicyclo[16.2.1]henicosa-1(21),6,8,18-tetraene-5,13-dione |
|---|
| CAS Registry Number | Not Available |
|---|
| SMILES | C[C@H]1C\C(C)=C\C=C/C(=O)O[C@@H](CC2=NC(=CS2)[C@@H](C)C[C@@H](N)CC(=O)O1)\C=C(/C)\C=C\C(\C)=C\CN(C)C |
|---|
| InChI Identifier | InChI=1S/C31H45N3O4S/c1-21(13-14-34(6)7)11-12-23(3)16-27-19-29-33-28(20-39-29)24(4)17-26(32)18-31(36)37-25(5)15-22(2)9-8-10-30(35)38-27/h8-13,16,20,24-27H,14-15,17-19,32H2,1-7H3/b10-8-,12-11+,21-13+,22-9+,23-16+/t24-,25-,26+,27+/m0/s1 |
|---|
| InChI Key | DSPNTLCJTJBXTD-IRNRRZNASA-N |
|---|
| Experimental Spectra |
|---|
|
| Not Available | | Predicted Spectra |
|---|
|
| | Spectrum Type | Description | Depositor ID | Depositor Organization | Depositor | Deposition Date | View |
|---|
| 1D NMR | 13C NMR Spectrum (1D, 25 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 100 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 252 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 1000 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 50 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 200 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 75 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 300 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 101 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 400 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 126 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 500 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 151 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 600 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 176 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 700 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 201 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 800 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 226 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 900 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum |
| | Chemical Shift Submissions |
|---|
|
| Not Available | | Species |
|---|
| Species of Origin | |
|---|
| Chemical Taxonomy |
|---|
| Description | Belongs to the class of organic compounds known as macrolides and analogues. These are organic compounds containing a lactone ring of at least twelve members. |
|---|
| Kingdom | Organic compounds |
|---|
| Super Class | Phenylpropanoids and polyketides |
|---|
| Class | Macrolides and analogues |
|---|
| Sub Class | Not Available |
|---|
| Direct Parent | Macrolides and analogues |
|---|
| Alternative Parents | |
|---|
| Substituents | - Macrolide
- Aralkylamine
- Dicarboxylic acid or derivatives
- Azole
- Thiazole
- Heteroaromatic compound
- Enoate ester
- Alpha,beta-unsaturated carboxylic ester
- Amino acid or derivatives
- Carboxylic acid ester
- Lactone
- Tertiary amine
- Tertiary aliphatic amine
- Carboxylic acid derivative
- Oxacycle
- Azacycle
- Organoheterocyclic compound
- Organic nitrogen compound
- Primary amine
- Organooxygen compound
- Organonitrogen compound
- Primary aliphatic amine
- Organic oxide
- Organic oxygen compound
- Amine
- Hydrocarbon derivative
- Carbonyl group
- Aromatic heteropolycyclic compound
|
|---|
| Molecular Framework | Aromatic heteropolycyclic compounds |
|---|
| External Descriptors | Not Available |
|---|
| Physical Properties |
|---|
| State | Not Available |
|---|
| Experimental Properties | | Property | Value | Reference |
|---|
| Melting Point | Not Available | Not Available | | Boiling Point | Not Available | Not Available | | Water Solubility | Not Available | Not Available | | LogP | Not Available | Not Available |
|
|---|
| Predicted Properties | |
|---|
| General References | - Furstner A: Lessons from Natural Product Total Synthesis: Macrocyclization and Postcyclization Strategies. Acc Chem Res. 2021 Feb 16;54(4):861-874. doi: 10.1021/acs.accounts.0c00759. Epub 2021 Jan 28. [PubMed:33507727 ]
- Ingolia NT: eIF4A inhibitors PatA and RocA stack the deck against translation. Structure. 2021 Jul 1;29(7):638-639. doi: 10.1016/j.str.2021.06.009. [PubMed:34214439 ]
- Naineni SK, Liang J, Hull K, Cencic R, Zhu M, Northcote P, Teesdale-Spittle P, Romo D, Nagar B, Pelletier J: Functional mimicry revealed by the crystal structure of an eIF4A:RNA complex bound to the interfacial inhibitor, desmethyl pateamine A. Cell Chem Biol. 2021 Jun 17;28(6):825-834.e6. doi: 10.1016/j.chembiol.2020.12.006. Epub 2021 Jan 6. [PubMed:33412110 ]
- Truax NJ, Romo D: Bridging the gap between natural product synthesis and drug discovery. Nat Prod Rep. 2020 Nov 1;37(11):1436-1453. doi: 10.1039/d0np00048e. Epub 2020 Oct 26. [PubMed:33104139 ]
- Storey MA, Andreassend SK, Bracegirdle J, Brown A, Keyzers RA, Ackerley DF, Northcote PT, Owen JG: Metagenomic Exploration of the Marine Sponge Mycale hentscheli Uncovers Multiple Polyketide-Producing Bacterial Symbionts. mBio. 2020 Mar 24;11(2):e02997-19. doi: 10.1128/mBio.02997-19. [PubMed:32209692 ]
- Naineni SK, Itoua Maiga R, Cencic R, Putnam AA, Amador LA, Rodriguez AD, Jankowsky E, Pelletier J: A comparative study of small molecules targeting eIF4A. RNA. 2020 May;26(5):541-549. doi: 10.1261/rna.072884.119. Epub 2020 Feb 3. [PubMed:32014999 ]
- Kommaraju SS, Aulicino J, Gobbooru S, Li J, Zhu M, Romo D, Low WK: Investigation of the mechanism of action of a potent pateamine A analog, des-methyl, des-amino pateamine A (DMDAPatA). Biochem Cell Biol. 2020 Aug;98(4):502-510. doi: 10.1139/bcb-2019-0307. Epub 2020 Feb 2. [PubMed:32008367 ]
- Adedoja AN, McMahan T, Neal JP, Hamal Dhakal S, Jois S, Romo D, Hull K, Garlapati S: Translation initiation factors GleIF4E2 and GleIF4A can interact directly with the components of the pre-initiation complex to facilitate translation initiation in Giardia lamblia. Mol Biochem Parasitol. 2020 Mar;236:111258. doi: 10.1016/j.molbiopara.2020.111258. Epub 2020 Jan 20. [PubMed:31968220 ]
- LOTUS database [Link]
|
|---|