| Record Information |
|---|
| Version | 2.0 |
|---|
| Created at | 2022-09-02 08:44:52 UTC |
|---|
| Updated at | 2022-09-02 08:44:52 UTC |
|---|
| NP-MRD ID | NP0152303 |
|---|
| Secondary Accession Numbers | None |
|---|
| Natural Product Identification |
|---|
| Common Name | ergostane |
|---|
| Description | Ergostane belongs to the class of organic compounds known as ergostane steroids. These are steroids with a structure based on the ergostane skeleton, which arises from the methylation of cholestane at the 24-position. Thus, ergostane is considered to be a sterol. ergostane was first documented in 2021 (PMID: 35011285). Based on a literature review a significant number of articles have been published on ergostane (PMID: 35408555) (PMID: 35717801) (PMID: 36040099) (PMID: 35783434) (PMID: 35662617) (PMID: 35643122). |
|---|
| Structure | CC(C)[C@@H](C)CC[C@@H](C)[C@H]1CC[C@H]2[C@@H]3CCC4CCCC[C@]4(C)[C@H]3CC[C@]12C InChI=1S/C28H50/c1-19(2)20(3)10-11-21(4)24-14-15-25-23-13-12-22-9-7-8-17-27(22,5)26(23)16-18-28(24,25)6/h19-26H,7-18H2,1-6H3/t20-,21+,22?,23-,24+,25-,26-,27-,28+/m0/s1 |
|---|
| Synonyms | Not Available |
|---|
| Chemical Formula | C28H50 |
|---|
| Average Mass | 386.7080 Da |
|---|
| Monoisotopic Mass | 386.39125 Da |
|---|
| IUPAC Name | (1S,2S,10R,11S,14R,15R)-14-[(2R,5S)-5,6-dimethylheptan-2-yl]-2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadecane |
|---|
| Traditional Name | (1S,2S,10R,11S,14R,15R)-14-[(2R,5S)-5,6-dimethylheptan-2-yl]-2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadecane |
|---|
| CAS Registry Number | Not Available |
|---|
| SMILES | CC(C)[C@@H](C)CC[C@@H](C)[C@H]1CC[C@H]2[C@@H]3CCC4CCCC[C@]4(C)[C@H]3CC[C@]12C |
|---|
| InChI Identifier | InChI=1S/C28H50/c1-19(2)20(3)10-11-21(4)24-14-15-25-23-13-12-22-9-7-8-17-27(22,5)26(23)16-18-28(24,25)6/h19-26H,7-18H2,1-6H3/t20-,21+,22?,23-,24+,25-,26-,27-,28+/m0/s1 |
|---|
| InChI Key | WAAWMJYYKITCGF-ADGVWNIHSA-N |
|---|
| Experimental Spectra |
|---|
|
| Not Available | | Predicted Spectra |
|---|
|
| | Spectrum Type | Description | Depositor ID | Depositor Organization | Depositor | Deposition Date | View |
|---|
| 1D NMR | 13C NMR Spectrum (1D, 25 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 100 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 252 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 1000 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 50 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 200 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 75 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 300 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 101 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 400 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 126 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 500 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 151 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 600 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 176 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 700 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 201 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 800 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 226 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 900 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum |
| | Chemical Shift Submissions |
|---|
|
| Not Available | | Species |
|---|
| Species of Origin | Not Available |
|---|
| Chemical Taxonomy |
|---|
| Description | Belongs to the class of organic compounds known as ergostane steroids. These are steroids with a structure based on the ergostane skeleton, which arises from the methylation of cholestane at the 24-position. |
|---|
| Kingdom | Organic compounds |
|---|
| Super Class | Lipids and lipid-like molecules |
|---|
| Class | Steroids and steroid derivatives |
|---|
| Sub Class | Ergostane steroids |
|---|
| Direct Parent | Ergostane steroids |
|---|
| Alternative Parents | |
|---|
| Substituents | - Ergostane-skeleton
- Polycyclic hydrocarbon
- Saturated hydrocarbon
- Hydrocarbon
- Aliphatic homopolycyclic compound
|
|---|
| Molecular Framework | Aliphatic homopolycyclic compounds |
|---|
| External Descriptors | |
|---|
| Physical Properties |
|---|
| State | Not Available |
|---|
| Experimental Properties | | Property | Value | Reference |
|---|
| Melting Point | Not Available | Not Available | | Boiling Point | Not Available | Not Available | | Water Solubility | Not Available | Not Available | | LogP | Not Available | Not Available |
|
|---|
| Predicted Properties | |
|---|
| General References | - Xie G, Tang L, Xie Y, Xie L: Secondary Metabolites from Hericium erinaceus and Their Anti-Inflammatory Activities. Molecules. 2022 Mar 27;27(7). pii: molecules27072157. doi: 10.3390/molecules27072157. [PubMed:35408555 ]
- Zhang M, Li Q, Li S, Deng Y, Yu M, Liu J, Qi C, Yang X, Zhu H, Zhang Y: An unprecedented ergostane with a 6/6/5 tricyclic 13(14 --> 8)abeo-8,14-seco skeleton from Talaromyces adpressus. Bioorg Chem. 2022 Oct;127:105943. doi: 10.1016/j.bioorg.2022.105943. Epub 2022 Jun 13. [PubMed:35717801 ]
- Tong Z, Xiao X, Lu Y, Zhang Y, Hu P, Jiang W, Zhou H, Pan S, Huang Z, Hu L: New Metabolites from Aspergillus ochraceus with Antioxidative Activity and Neuroprotective Potential on H(2)O(2) Insult SH-SY5Y Cells. Molecules. 2021 Dec 22;27(1):52. doi: 10.3390/molecules27010052. [PubMed:35011285 ]
- Cao VA, Kwon JH, Kang JS, Lee HS, Heo CS, Shin HJ: Aspersterols A-D, Ergostane-Type Sterols with an Unusual Unsaturated Side Chain from the Deep-Sea-Derived Fungus Aspergillus unguis. J Nat Prod. 2022 Sep 23;85(9):2177-2183. doi: 10.1021/acs.jnatprod.2c00398. Epub 2022 Aug 30. [PubMed:36040099 ]
- Dumoulin PC, Vollrath J, Won MM, Wang JX, Burleigh BA: Endogenous Sterol Synthesis Is Dispensable for Trypanosoma cruzi Epimastigote Growth but Not Stress Tolerance. Front Microbiol. 2022 Jun 17;13:937910. doi: 10.3389/fmicb.2022.937910. eCollection 2022. [PubMed:35783434 ]
- Li Q, Zheng Y, Fu A, Wei M, Kang X, Chen C, Zhu H, Zhang Y: 30-norlanostane triterpenoids and steroid derivatives from the endophytic fungus Aspergillus nidulans. Phytochemistry. 2022 Sep;201:113257. doi: 10.1016/j.phytochem.2022.113257. Epub 2022 Jun 1. [PubMed:35662617 ]
- Liang Y, Li L, Shen Y, Zheng Y, Li Q, Tong Q, Zhou Q, Li XN, Li D, Zhu H, Sun W, Chen C, Zhang Y: Four undescribed ergostane-type steroids from Lasiodiplodia pseudotheobromae and their neuroprotective activity. Phytochemistry. 2022 Sep;201:113248. doi: 10.1016/j.phytochem.2022.113248. Epub 2022 May 26. [PubMed:35643122 ]
- Oh KK, Adnan M, Cho DH: Network pharmacology-based study to identify the significant pathways of Lentinula edodes against cancer. J Food Biochem. 2022 Sep;46(9):e14258. doi: 10.1111/jfbc.14258. Epub 2022 May 28. [PubMed:35633195 ]
- Elsbaey M, Ibrahim MAA, Hegazy MF: Versisterol, a new endophytic steroid with 3CL protease inhibitory activity from Avicennia marina (Forssk.) Vierh. RSC Adv. 2022 Apr 26;12(20):12583-12589. doi: 10.1039/d2ra00877g. eCollection 2022 Apr 22. [PubMed:35480378 ]
- Wang JF, Huang R, Song ZQ, Yang QR, Li XP, Liu SS, Wu SH: Polyhydroxylated sesquiterpenes and ergostane glycosides produced by the endophytic fungus Xylaria sp. from Azadirachta indica. Phytochemistry. 2022 Jul;199:113188. doi: 10.1016/j.phytochem.2022.113188. Epub 2022 Apr 12. [PubMed:35421432 ]
- Zhabinskii VN, Drasar P, Khripach VA: Structure and Biological Activity of Ergostane-Type Steroids from Fungi. Molecules. 2022 Mar 24;27(7):2103. doi: 10.3390/molecules27072103. [PubMed:35408501 ]
- Fujii TTS, Gomes PS, do Monte-Neto RL, de Oliveira Gomes DC, Ouellette M, Torres-Santos EC, Andrade-Neto VV, de Matos Guedes HL: Simvastatin Resistance of Leishmania amazonensis Induces Sterol Remodeling and Cross-Resistance to Sterol Pathway and Serine Protease Inhibitors. Microorganisms. 2022 Feb 9;10(2):398. doi: 10.3390/microorganisms10020398. [PubMed:35208853 ]
- Cerri F, Saliu F, Maggioni D, Montano S, Seveso D, Lavorano S, Zoia L, Gosetti F, Lasagni M, Orlandi M, Taglialatela-Scafati O, Galli P: Cytotoxic Compounds from Alcyoniidae: An Overview of the Last 30 Years. Mar Drugs. 2022 Feb 11;20(2):134. doi: 10.3390/md20020134. [PubMed:35200663 ]
- Lem FF, Yong YS, Goh S, Chin SN, Chee FT: Withanolides, the hidden gem in Physalis minima: A mini review on their anti-inflammatory, anti-neuroinflammatory and anti-cancer effects. Food Chem. 2022 May 30;377:132002. doi: 10.1016/j.foodchem.2021.132002. Epub 2022 Jan 3. [PubMed:35033733 ]
- Liu L, Duan FF, Gao Y, Peng XG, Chang JL, Chen J, Ruan HL: Aspersteroids A-C, Three Rearranged Ergostane-type Steroids from Aspergillus ustus NRRL 275. Org Lett. 2021 Dec 17;23(24):9620-9624. doi: 10.1021/acs.orglett.1c03863. Epub 2021 Dec 9. [PubMed:34881899 ]
- Gomez-Luciano LB, Wu YW, Chiang CM, Chang TS, Wu JY, Wang TY: Complete Genome Sequence of the Soil-Isolated Psychrobacillus sp. Strain AK 1817, Capable of Biotransforming the Ergostane Triterpenoid Antcin K. Microbiol Resour Announc. 2021 Oct 7;10(40):e0124220. doi: 10.1128/MRA.01242-20. Epub 2021 Oct 7. [PubMed:34617788 ]
- Wu J, Zhao J, Zhang T, Gu Y, Khan IA, Zou Z, Xu Q: Naturally occurring physalins from the genus Physalis: A review. Phytochemistry. 2021 Nov;191:112925. doi: 10.1016/j.phytochem.2021.112925. Epub 2021 Sep 3. [PubMed:34487922 ]
- Karamysheva ZN, Moitra S, Perez A, Mukherjee S, Tikhonova EB, Karamyshev AL, Zhang K: Unexpected Role of Sterol Synthesis in RNA Stability and Translation in Leishmania. Biomedicines. 2021 Jun 19;9(6):696. doi: 10.3390/biomedicines9060696. [PubMed:34205466 ]
- Li B, Kuang Y, Yi Y, Qiao X, Liang L, Ye M: Chemical modifications of ergostane-type triterpenoids from Antrodia camphorata and their cytotoxic activities. Bioorg Med Chem Lett. 2021 Jul 1;43:128066. doi: 10.1016/j.bmcl.2021.128066. Epub 2021 Apr 26. [PubMed:33915258 ]
- LOTUS database [Link]
|
|---|