| Record Information |
|---|
| Version | 2.0 |
|---|
| Created at | 2022-09-02 05:21:31 UTC |
|---|
| Updated at | 2022-09-02 05:21:31 UTC |
|---|
| NP-MRD ID | NP0149463 |
|---|
| Secondary Accession Numbers | None |
|---|
| Natural Product Identification |
|---|
| Common Name | (1s,2r,3s,5s,16e,18e,20r,21s)-11-chloro-21,23-dihydroxy-12,20-dimethoxy-2,5,9,16-tetramethyl-8-oxo-4,24-dioxa-9,22-diazatetracyclo[19.3.1.1¹⁰,¹⁴.0³,⁵]hexacosa-10,12,14(26),16,18,22-hexaen-6-yl (2s)-2-(n-methylacetamido)propanoate |
|---|
| Description | MAYTANSINE, also known as soravtansine or dmmo-maytansine, belongs to the class of organic compounds known as macrolactams. These are cyclic amides of amino carboxylic acids, having a 1-azacycloalkan-2-one structure, or analogues having unsaturation or heteroatoms replacing one or more carbon atoms of the ring. They are nitrogen analogues (the a nitrogen atom replacing the o atom of the cyclic carboxylic acid group ) of the naturally occurring macrolides. (1s,2r,3s,5s,16e,18e,20r,21s)-11-chloro-21,23-dihydroxy-12,20-dimethoxy-2,5,9,16-tetramethyl-8-oxo-4,24-dioxa-9,22-diazatetracyclo[19.3.1.1¹⁰,¹⁴.0³,⁵]hexacosa-10,12,14(26),16,18,22-hexaen-6-yl (2s)-2-(n-methylacetamido)propanoate is found in Gymnosporia diversifolia. (1s,2r,3s,5s,16e,18e,20r,21s)-11-chloro-21,23-dihydroxy-12,20-dimethoxy-2,5,9,16-tetramethyl-8-oxo-4,24-dioxa-9,22-diazatetracyclo[19.3.1.1¹⁰,¹⁴.0³,⁵]hexacosa-10,12,14(26),16,18,22-hexaen-6-yl (2s)-2-(n-methylacetamido)propanoate was first documented in 2021 (PMID: 34461087). Based on a literature review a significant number of articles have been published on MAYTANSINE (PMID: 35594923) (PMID: 35373789) (PMID: 35362385) (PMID: 35316825) (PMID: 35161302) (PMID: 35064993). |
|---|
| Structure | CO[C@@H]1\C=C\C=C(C)\CC2=CC(N(C)C(=O)CC(OC(=O)[C@H](C)N(C)C(C)=O)[C@]3(C)O[C@H]3[C@H](C)[C@@H]3C[C@@]1(O)N=C(O)O3)=C(Cl)C(OC)=C2 InChI=1S/C34H46ClN3O10/c1-18-11-10-12-26(45-9)34(43)17-25(46-32(42)36-34)19(2)30-33(5,48-30)27(47-31(41)20(3)37(6)21(4)39)16-28(40)38(7)23-14-22(13-18)15-24(44-8)29(23)35/h10-12,14-15,19-20,25-27,30,43H,13,16-17H2,1-9H3,(H,36,42)/b12-10+,18-11+/t19-,20+,25+,26-,27?,30+,33+,34+/m1/s1 |
|---|
| Synonyms | | Value | Source |
|---|
| DMMO-maytansine | MeSH | | Maytansinoid DM1 | MeSH | | N2'-Deacetyl-N2'-(4-mercapto-4-methyl-1-oxopentyl)maytansine | MeSH | | Soravtansine | MeSH | | DM4, Maytansinoid | MeSH | | Emtansine | MeSH | | DM1, Maytansinoid | MeSH | | Maitansine | MeSH | | Maytansinoid DM4 | MeSH | | Mertansine | MeSH | | DMMO maytansine | MeSH | | Ravtansine | MeSH |
|
|---|
| Chemical Formula | C34H46ClN3O10 |
|---|
| Average Mass | 692.2000 Da |
|---|
| Monoisotopic Mass | 691.28717 Da |
|---|
| IUPAC Name | (1S,2R,3S,5S,16E,18E,20R,21S)-11-chloro-21,23-dihydroxy-12,20-dimethoxy-2,5,9,16-tetramethyl-8-oxo-4,24-dioxa-9,22-diazatetracyclo[19.3.1.1^{10,14}.0^{3,5}]hexacosa-10,12,14(26),16,18,22-hexaen-6-yl (2S)-2-(N-methylacetamido)propanoate |
|---|
| Traditional Name | (1S,2R,3S,5S,16E,18E,20R,21S)-11-chloro-21,23-dihydroxy-12,20-dimethoxy-2,5,9,16-tetramethyl-8-oxo-4,24-dioxa-9,22-diazatetracyclo[19.3.1.1^{10,14}.0^{3,5}]hexacosa-10,12,14(26),16,18,22-hexaen-6-yl (2S)-2-(N-methylacetamido)propanoate |
|---|
| CAS Registry Number | Not Available |
|---|
| SMILES | CO[C@@H]1\C=C\C=C(C)\CC2=CC(N(C)C(=O)CC(OC(=O)[C@H](C)N(C)C(C)=O)[C@]3(C)O[C@H]3[C@H](C)[C@@H]3C[C@@]1(O)N=C(O)O3)=C(Cl)C(OC)=C2 |
|---|
| InChI Identifier | InChI=1S/C34H46ClN3O10/c1-18-11-10-12-26(45-9)34(43)17-25(46-32(42)36-34)19(2)30-33(5,48-30)27(47-31(41)20(3)37(6)21(4)39)16-28(40)38(7)23-14-22(13-18)15-24(44-8)29(23)35/h10-12,14-15,19-20,25-27,30,43H,13,16-17H2,1-9H3,(H,36,42)/b12-10+,18-11+/t19-,20+,25+,26-,27?,30+,33+,34+/m1/s1 |
|---|
| InChI Key | WKPWGQKGSOKKOO-QVMUNQMUSA-N |
|---|
| Experimental Spectra |
|---|
|
| Not Available | | Predicted Spectra |
|---|
|
| | Spectrum Type | Description | Depositor ID | Depositor Organization | Depositor | Deposition Date | View |
|---|
| 1D NMR | 13C NMR Spectrum (1D, 25 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 100 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 252 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 1000 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 50 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 200 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 75 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 300 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 101 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 400 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 126 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 500 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 151 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 600 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 176 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 700 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 201 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 800 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 226 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 900 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum |
| | Chemical Shift Submissions |
|---|
|
| Not Available | | Species |
|---|
| Species of Origin | |
|---|
| Chemical Taxonomy |
|---|
| Description | Belongs to the class of organic compounds known as macrolactams. These are cyclic amides of amino carboxylic acids, having a 1-azacycloalkan-2-one structure, or analogues having unsaturation or heteroatoms replacing one or more carbon atoms of the ring. They are nitrogen analogues (the a nitrogen atom replacing the o atom of the cyclic carboxylic acid group ) of the naturally occurring macrolides. |
|---|
| Kingdom | Organic compounds |
|---|
| Super Class | Phenylpropanoids and polyketides |
|---|
| Class | Macrolactams |
|---|
| Sub Class | Not Available |
|---|
| Direct Parent | Macrolactams |
|---|
| Alternative Parents | |
|---|
| Substituents | - Macrolactam
- Alpha-amino acid ester
- Alanine or derivatives
- Alpha-amino acid or derivatives
- Anisole
- Phenol ether
- Alkyl aryl ether
- 1,3-oxazinane
- Oxazinane
- Aryl chloride
- Benzenoid
- Aryl halide
- Tertiary carboxylic acid amide
- Carbamic acid ester
- Acetamide
- Carboxylic acid ester
- Carboxamide group
- Lactam
- Alkanolamine
- Oxacycle
- Azacycle
- Organoheterocyclic compound
- Carboxylic acid derivative
- Dialkyl ether
- Oxirane
- Ether
- Monocarboxylic acid or derivatives
- Carbonyl group
- Organooxygen compound
- Hydrocarbon derivative
- Organonitrogen compound
- Organic nitrogen compound
- Organic oxygen compound
- Organochloride
- Organohalogen compound
- Organic oxide
- Aromatic heteropolycyclic compound
|
|---|
| Molecular Framework | Aromatic heteropolycyclic compounds |
|---|
| External Descriptors | Not Available |
|---|
| Physical Properties |
|---|
| State | Not Available |
|---|
| Experimental Properties | | Property | Value | Reference |
|---|
| Melting Point | Not Available | Not Available | | Boiling Point | Not Available | Not Available | | Water Solubility | Not Available | Not Available | | LogP | Not Available | Not Available |
|
|---|
| Predicted Properties | |
|---|
| General References | - Bai R, Smith AB 3rd, Pettit GR, Hamel E: The interaction of spongistatin 1 with tubulin. Arch Biochem Biophys. 2022 Sep 30;727:109296. doi: 10.1016/j.abb.2022.109296. Epub 2022 May 17. [PubMed:35594923 ]
- Eren E, Watts NR, Sackett DL, Wingfield PT: Conformational changes in tubulin upon binding cryptophycin-52 reveal its mechanism of action. J Biol Chem. 2021 Oct;297(4):101138. doi: 10.1016/j.jbc.2021.101138. Epub 2021 Aug 28. [PubMed:34461087 ]
- Xie HN, Chen YY, Zhu GB, Han HH, Hu XL, Pan ZQ, Zang Y, Xie DH, He XP, Li J, James TD: Targeted delivery of maytansine to liver cancer cells via galactose-modified supramolecular two-dimensional glycomaterial. Chem Commun (Camb). 2022 Apr 19;58(32):5029-5032. doi: 10.1039/d1cc06809a. [PubMed:35373789 ]
- Pathak K, Pathak MP, Saikia R, Gogoi U, Sahariah JJ, Zothantluanga JH, Samanta A, Das A: Cancer Chemotherapy via Natural Bioactive Compounds. Curr Drug Discov Technol. 2022;19(4):e310322202888. doi: 10.2174/1570163819666220331095744. [PubMed:35362385 ]
- Cheng H, Xiong G, Li Y, Zhu J, Xiong X, Wang Q, Zhang L, Dong H, Zhu C, Liu G, Chen H: Increased yield of AP-3 by inactivation of asm25 in Actinosynnema pretiosum ssp. auranticum ATCC 31565. PLoS One. 2022 Mar 22;17(3):e0265517. doi: 10.1371/journal.pone.0265517. eCollection 2022. [PubMed:35316825 ]
- Pitakbut T, Spiteller M, Kayser O: Genome Mining and Gene Expression Reveal Maytansine Biosynthetic Genes from Endophytic Communities Living inside Gymnosporia heterophylla (Eckl. and Zeyh.) Loes. and the Relationship with the Plant Biosynthetic Gene, Friedelin Synthase. Plants (Basel). 2022 Jan 25;11(3):321. doi: 10.3390/plants11030321. [PubMed:35161302 ]
- Ma W, Yang Y, Zhu J, Jia W, Zhang T, Liu Z, Chen X, Lin Y: Biomimetic Nanoerythrosome-Coated Aptamer-DNA Tetrahedron/Maytansine Conjugates: pH-Responsive and Targeted Cytotoxicity for HER2-Positive Breast Cancer. Adv Mater. 2022 Nov;34(46):e2109609. doi: 10.1002/adma.202109609. Epub 2022 Feb 17. [PubMed:35064993 ]
- Marzullo P, Boiarska Z, Perez-Pena H, Abel AC, Alvarez-Bernad B, Lucena-Agell D, Vasile F, Sironi M, Altmann KH, Prota AE, Diaz JF, Pieraccini S, Passarella D: Maytansinol Derivatives: Side Reactions as a Chance for New Tubulin Binders. Chemistry. 2022 Jan 10;28(2):e202103520. doi: 10.1002/chem.202103520. Epub 2021 Nov 29. [PubMed:34788896 ]
- Cho N, Ko S, Shokeen M: Tissue biodistribution and tumor targeting of near-infrared labelled anti-CD38 antibody-drug conjugate in preclinical multiple myeloma. Oncotarget. 2021 Sep 28;12(20):2039-2050. doi: 10.18632/oncotarget.28074. eCollection 2021 Sep 28. [PubMed:34611478 ]
- Huang YY, Chen L, Ma GX, Xu XD, Jia XG, Deng FS, Li XJ, Yuan JQ: A Review on Phytochemicals of the Genus Maytenus and Their Bioactive Studies. Molecules. 2021 Jul 28;26(15):4563. doi: 10.3390/molecules26154563. [PubMed:34361712 ]
- Kollmannsberger C, Britten CD, Olszanski AJ, Walker JA, Zang W, Willard MD, Radtke DB, Farrington DL, Bell-McGuinn KM, Patnaik A: A phase 1 study of LY3076226, a fibroblast growth factor receptor 3 (FGFR3) antibody-drug conjugate, in patients with advanced or metastatic cancer. Invest New Drugs. 2021 Dec;39(6):1613-1623. doi: 10.1007/s10637-021-01146-x. Epub 2021 Jul 15. [PubMed:34264412 ]
- Li W, Huang M, Li Y, Xia A, Tan L, Zhang Z, Wang Y, Yang J: C3 ester side chain plays a pivotal role in the antitumor activity of Maytansinoids. Biochem Biophys Res Commun. 2021 Aug 20;566:197-203. doi: 10.1016/j.bbrc.2021.05.071. Epub 2021 Jun 15. [PubMed:34144258 ]
- Anderson MG, Zhang Q, Rodriguez LE, Hecquet CM, Donawho CK, Ansell PJ, Reilly EB: ABBV-176, a PRLR antibody drug conjugate with a potent DNA-damaging PBD cytotoxin and enhanced activity with PARP inhibition. BMC Cancer. 2021 Jun 9;21(1):681. doi: 10.1186/s12885-021-08403-5. [PubMed:34107902 ]
- Lombardi J, Lory P, Martin N, Mayeur D, Combret S, Grandvuillemin A, Boulay C, Schmitt A: Trastuzumab-emtansine induced pleural and pericardial effusions. J Oncol Pharm Pract. 2021 Dec;27(8):2041-2044. doi: 10.1177/10781552211015772. Epub 2021 May 18. [PubMed:34000917 ]
- Tang SC, Capra CL, Ajebo GH, Meza-Junco J, Mairs S, Craft BS, Zhu X, Maihle N, Hillegass WB: Systemic toxicities of trastuzumab-emtansine predict tumor response in HER2+ metastatic breast cancer. Int J Cancer. 2021 Apr 12;149(4):909-16. doi: 10.1002/ijc.33597. [PubMed:33844843 ]
- LOTUS database [Link]
|
|---|