| Record Information |
|---|
| Version | 2.0 |
|---|
| Created at | 2022-09-02 05:07:13 UTC |
|---|
| Updated at | 2022-09-02 05:07:14 UTC |
|---|
| NP-MRD ID | NP0149252 |
|---|
| Secondary Accession Numbers | None |
|---|
| Natural Product Identification |
|---|
| Common Name | (3r)-1h,2h,3h,9h-pyrrolo[2,1-b]quinazoline-3,7-diol |
|---|
| Description | Vasicinol belongs to the class of organic compounds known as quinazolines. Quinazolines are compounds containing a quinazoline moiety, which is made up of two fused six-member aromatic rings, a benzene ring and a pyrimidine ring. (3r)-1h,2h,3h,9h-pyrrolo[2,1-b]quinazoline-3,7-diol is found in Linaria vulgaris and Sida cordifolia. (3r)-1h,2h,3h,9h-pyrrolo[2,1-b]quinazoline-3,7-diol was first documented in 2015 (PMID: 25849329). Based on a literature review a small amount of articles have been published on Vasicinol (PMID: 35422700) (PMID: 34834066) (PMID: 33488726) (PMID: 35809281). |
|---|
| Structure | O[C@@H]1CCN2CC3=CC(O)=CC=C3N=C12 InChI=1S/C11H12N2O2/c14-8-1-2-9-7(5-8)6-13-4-3-10(15)11(13)12-9/h1-2,5,10,14-15H,3-4,6H2/t10-/m1/s1 |
|---|
| Synonyms | Not Available |
|---|
| Chemical Formula | C11H12N2O2 |
|---|
| Average Mass | 204.2290 Da |
|---|
| Monoisotopic Mass | 204.08988 Da |
|---|
| IUPAC Name | (3R)-1H,2H,3H,9H-pyrrolo[2,1-b]quinazoline-3,7-diol |
|---|
| Traditional Name | (3R)-1H,2H,3H,9H-pyrrolo[2,1-b]quinazoline-3,7-diol |
|---|
| CAS Registry Number | Not Available |
|---|
| SMILES | O[C@@H]1CCN2CC3=CC(O)=CC=C3N=C12 |
|---|
| InChI Identifier | InChI=1S/C11H12N2O2/c14-8-1-2-9-7(5-8)6-13-4-3-10(15)11(13)12-9/h1-2,5,10,14-15H,3-4,6H2/t10-/m1/s1 |
|---|
| InChI Key | WEFMOGRHGUPGMA-SNVBAGLBSA-N |
|---|
| Experimental Spectra |
|---|
|
| Not Available | | Predicted Spectra |
|---|
|
| | Spectrum Type | Description | Depositor ID | Depositor Organization | Depositor | Deposition Date | View |
|---|
| 1D NMR | 13C NMR Spectrum (1D, 25 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 100 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 252 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 1000 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 50 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 200 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 75 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 300 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 101 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 400 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 126 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 500 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 151 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 600 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 176 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 700 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 201 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 800 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 226 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 900 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum |
| | Chemical Shift Submissions |
|---|
|
| Not Available | | Species |
|---|
| Species of Origin | |
|---|
| Chemical Taxonomy |
|---|
| Description | Belongs to the class of organic compounds known as quinazolines. Quinazolines are compounds containing a quinazoline moiety, which is made up of two fused six-member aromatic rings, a benzene ring and a pyrimidine ring. |
|---|
| Kingdom | Organic compounds |
|---|
| Super Class | Organoheterocyclic compounds |
|---|
| Class | Diazanaphthalenes |
|---|
| Sub Class | Benzodiazines |
|---|
| Direct Parent | Quinazolines |
|---|
| Alternative Parents | |
|---|
| Substituents | - Quinazoline
- Phenol
- 1-hydroxy-2-unsubstituted benzenoid
- N-alkylpyrrolidine
- Imidolactam
- Benzenoid
- Pyrrolidine
- Secondary alcohol
- Organic 1,3-dipolar compound
- Azacycle
- Carboxylic acid amidine
- Amidine
- Propargyl-type 1,3-dipolar organic compound
- Alcohol
- Hydrocarbon derivative
- Organic oxygen compound
- Organic nitrogen compound
- Organooxygen compound
- Organonitrogen compound
- Amine
- Aromatic heteropolycyclic compound
|
|---|
| Molecular Framework | Aromatic heteropolycyclic compounds |
|---|
| External Descriptors | Not Available |
|---|
| Physical Properties |
|---|
| State | Not Available |
|---|
| Experimental Properties | | Property | Value | Reference |
|---|
| Melting Point | Not Available | Not Available | | Boiling Point | Not Available | Not Available | | Water Solubility | Not Available | Not Available | | LogP | Not Available | Not Available |
|
|---|
| Predicted Properties | |
|---|
| General References | - Iftikhar F, Rahman S, Khan MBN, Khan K, Khan MN, Uddin R, Musharraf SG: In Vitro and In Vivo Studies for the Investigation of gamma-Globin Gene Induction by Adhatoda vasica: A Pre-Clinical Study of HbF Inducers for beta-Thalassemia. Front Pharmacol. 2022 Mar 29;13:797853. doi: 10.3389/fphar.2022.797853. eCollection 2022. [PubMed:35422700 ]
- Tehreem S, Rahman S, Bhatti MS, Uddin R, Khan MN, Tauseef S, El-Seedi HR, Bin Muhsinah A, Uddin J, Musharraf SG: A UPLC-DAD-Based Bio-Screening Assay for the Evaluation of the Angiotensin Converting Enzyme Inhibitory Potential of Plant Extracts and Compounds: Pyrroquinazoline Alkaloids from Adhatoda vasica as a Case Study. Molecules. 2021 Nov 18;26(22). pii: molecules26226971. doi: 10.3390/molecules26226971. [PubMed:34834066 ]
- Sebola TE, Uche-Okereafor NC, Mekuto L, Makatini MM, Green E, Mavumengwana V: Antibacterial and Anticancer Activity and Untargeted Secondary Metabolite Profiling of Crude Bacterial Endophyte Extracts from Crinum macowanii Baker Leaves. Int J Microbiol. 2020 Dec 10;2020:8839490. doi: 10.1155/2020/8839490. eCollection 2020. [PubMed:33488726 ]
- Liu W, Shi X, Yang Y, Cheng X, Liu Q, Han H, Yang B, He C, Wang Y, Jiang B, Wang Z, Wang C: In vitro and in vivo metabolism and inhibitory activities of vasicine, a potent acetylcholinesterase and butyrylcholinesterase inhibitor. PLoS One. 2015 Apr 7;10(4):e0122366. doi: 10.1371/journal.pone.0122366. eCollection 2015. [PubMed:25849329 ]
- Shoaib A: A systematic ethnobotanical review of Adhatoda vasica (L.), Nees. Cell Mol Biol (Noisy-le-grand). 2022 Jan 2;67(4):248-263. doi: 10.14715/cmb/2021.67.4.28. [PubMed:35809281 ]
- LOTUS database [Link]
|
|---|