Np mrd loader

Record Information
Version2.0
Created at2022-09-02 04:19:41 UTC
Updated at2022-09-02 04:19:41 UTC
NP-MRD IDNP0148563
Secondary Accession NumbersNone
Natural Product Identification
Common Name(4e,12s,13s)-5,10-dimethyl-8,14,16-trioxatetracyclo[10.2.2.0¹,¹³.0⁷,¹¹]hexadeca-4,7(11),9-trien-15-one
DescriptionLinderane, also known as LDR CPD, belongs to the class of organic compounds known as 1,4-dioxanes. These are organic compounds containing 1,4-dioxane, an aliphatic six-member ring with two oxygen atoms in ring positions 1 and 4. (4e,12s,13s)-5,10-dimethyl-8,14,16-trioxatetracyclo[10.2.2.0¹,¹³.0⁷,¹¹]hexadeca-4,7(11),9-trien-15-one is found in Cryptocarya densiflora, Lindera aggregata, Neolitsea buisanensis, Neolitsea hiiranensis and Neolitsea villosa. (4e,12s,13s)-5,10-dimethyl-8,14,16-trioxatetracyclo[10.2.2.0¹,¹³.0⁷,¹¹]hexadeca-4,7(11),9-trien-15-one was first documented in 2009 (PMID: 20209914). Based on a literature review a significant number of articles have been published on Linderane (PMID: 35309717) (PMID: 34800885) (PMID: 34343060) (PMID: 31394125) (PMID: 30036998) (PMID: 29867482).
Structure
Thumb
Synonyms
ValueSource
LDR CPDMeSH
Chemical FormulaC15H16O4
Average Mass260.2890 Da
Monoisotopic Mass260.10486 Da
IUPAC Name(4E,12S,13S)-5,10-dimethyl-8,14,16-trioxatetracyclo[10.2.2.0^{1,13}.0^{7,11}]hexadeca-4,7(11),9-trien-15-one
Traditional Name(4E,12S,13S)-5,10-dimethyl-8,14,16-trioxatetracyclo[10.2.2.0^{1,13}.0^{7,11}]hexadeca-4,7(11),9-trien-15-one
CAS Registry NumberNot Available
SMILES
CC1=COC2=C1[C@@H]1OC(=O)C3(CC\C=C(C)\C2)O[C@@H]13
InChI Identifier
InChI=1S/C15H16O4/c1-8-4-3-5-15-13(19-15)12(18-14(15)16)11-9(2)7-17-10(11)6-8/h4,7,12-13H,3,5-6H2,1-2H3/b8-4+/t12-,13-,15?/m0/s1
InChI KeyKBMSVODXFLAQNJ-IUKAEILTSA-N
Experimental Spectra
Not Available
Predicted Spectra
Spectrum TypeDescriptionDepositor IDDepositor OrganizationDepositorDeposition DateView
1D NMR13C NMR Spectrum (1D, 25 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 100 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 252 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 1000 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 50 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 200 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 75 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 300 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 101 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 400 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 126 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 500 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 151 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 600 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 176 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 700 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 201 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 800 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 226 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 900 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
Chemical Shift Submissions
Not Available
Species
Species of Origin
Species NameSourceReference
Cryptocarya densifloraLOTUS Database
Lindera aggregataLOTUS Database
Neolitsea buisanensisLOTUS Database
Neolitsea hiiranensisLOTUS Database
Neolitsea villosaLOTUS Database
Chemical Taxonomy
Description Belongs to the class of organic compounds known as 1,4-dioxanes. These are organic compounds containing 1,4-dioxane, an aliphatic six-member ring with two oxygen atoms in ring positions 1 and 4.
KingdomOrganic compounds
Super ClassOrganoheterocyclic compounds
ClassDioxanes
Sub Class1,4-dioxanes
Direct Parent1,4-dioxanes
Alternative Parents
Substituents
  • Para-dioxane
  • Gamma butyrolactone
  • Furan
  • Oxolane
  • Heteroaromatic compound
  • Lactone
  • Carboxylic acid ester
  • Monocarboxylic acid or derivatives
  • Ether
  • Oxirane
  • Dialkyl ether
  • Carboxylic acid derivative
  • Oxacycle
  • Organooxygen compound
  • Organic oxide
  • Organic oxygen compound
  • Carbonyl group
  • Hydrocarbon derivative
  • Aromatic heteropolycyclic compound
Molecular FrameworkAromatic heteropolycyclic compounds
External DescriptorsNot Available
Physical Properties
StateNot Available
Experimental Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Predicted Properties
PropertyValueSource
logP2.35ALOGPS
logP2.65ChemAxon
logS-3.1ALOGPS
pKa (Strongest Basic)-2.8ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count2ChemAxon
Hydrogen Donor Count0ChemAxon
Polar Surface Area51.97 ŲChemAxon
Rotatable Bond Count0ChemAxon
Refractivity68.29 m³·mol⁻¹ChemAxon
Polarizability26.47 ųChemAxon
Number of Rings4ChemAxon
BioavailabilityYesChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleNoChemAxon
MDDR-like RuleNoChemAxon
HMDB IDNot Available
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FoodDB IDNot Available
KNApSAcK IDC00003317
Chemspider ID88297925
KEGG Compound IDNot Available
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkNot Available
METLIN IDNot Available
PubChem Compound6450227
PDB IDNot Available
ChEBI IDNot Available
Good Scents IDNot Available
References
General References
  1. Zhang T, Peng T, Rao J, Wang K, Qiu F: Quantitation of Diclofenac, Tolbutamide, and Warfarin as Typical CYP2C9 Substrates in Rat Plasma by UPLC-MS/MS and Its Application to Evaluate Linderane-Mediated Herb-Drug Interactions. J Anal Methods Chem. 2022 Mar 10;2022:1900037. doi: 10.1155/2022/1900037. eCollection 2022. [PubMed:35309717 ]
  2. Wang K, Zhang T, Rao J, Peng T, Gao Q, Feng X, Qiu F: Drug-drug interactions induced by Linderane based on mechanism-based inactivation of CYP2C9 and the molecular mechanisms. Bioorg Chem. 2022 Jan;118:105478. doi: 10.1016/j.bioorg.2021.105478. Epub 2021 Nov 15. [PubMed:34800885 ]
  3. Jani NA, Sirat HM, Ahmad F, Aminudin NI: New sesquiterpene dilactone and beta-carboline alkaloid and the alpha-glucosidase inhibitory activity of selected phytochemicals from Neolitsea cassia (L.) Kosterm. Nat Prod Res. 2021 Aug 3:1-9. doi: 10.1080/14786419.2021.1961134. [PubMed:34343060 ]
  4. Zhang H, Zhu C, Sun Z, Yan X, Wang H, Xu H, Ma J, Zhang Y: Linderane protects pancreatic beta cells from streptozotocin (STZ)-induced oxidative damage. Life Sci. 2019 Sep 15;233:116732. doi: 10.1016/j.lfs.2019.116732. Epub 2019 Aug 5. [PubMed:31394125 ]
  5. He Y, Cheng P, Wang W, Yan S, Tang Q, Liu D, Xie H: Rapid Investigation and Screening of Bioactive Components in Simo Decoction via LC-Q-TOF-MS and UF-HPLC-MD Methods. Molecules. 2018 Jul 20;23(7). pii: molecules23071792. doi: 10.3390/molecules23071792. [PubMed:30036998 ]
  6. Xie W, Ye Y, Feng Y, Xu T, Huang S, Shen J, Leng Y: Linderane Suppresses Hepatic Gluconeogenesis by Inhibiting the cAMP/PKA/CREB Pathway Through Indirect Activation of PDE 3 via ERK/STAT3. Front Pharmacol. 2018 May 15;9:476. doi: 10.3389/fphar.2018.00476. eCollection 2018. [PubMed:29867482 ]
  7. Yaermaimaiti S, Wang P, Luo J, Li RJ, Kong LY: Sesquiterpenoids from the seeds of Sarcandra glabra and the potential anti-inflammatory effects. Fitoterapia. 2016 Jun;111:7-11. doi: 10.1016/j.fitote.2016.03.020. Epub 2016 Apr 2. [PubMed:27050720 ]
  8. Wang H, Wang K, Mao X, Zhang Q, Yao T, Peng Y, Zheng J: Mechanism-based inactivation of CYP2C9 by linderane. Xenobiotica. 2015;45(12):1037-46. doi: 10.3109/00498254.2015.1041002. Epub 2015 Jun 11. [PubMed:26068520 ]
  9. Zheng Y, Luan L, Gan L, Zhou C, Wu Y: [Simultaneous determination of three sesquiterpene lactones in Radix Linderae by HPLC]. Zhongguo Zhong Yao Za Zhi. 2009 Nov;34(21):2777-80. [PubMed:20209914 ]
  10. LOTUS database [Link]