Np mrd loader

Record Information
Version2.0
Created at2022-09-02 03:19:03 UTC
Updated at2022-09-02 03:19:03 UTC
NP-MRD IDNP0147667
Secondary Accession NumbersNone
Natural Product Identification
Common Name(3r,5r)-1,3,5-trihydroxy-4-{[(2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoyl]oxy}cyclohexane-1-carboxylic acid
Description4-Feruloylquinic acid, also known as 4-feruloylquinate, belongs to the class of organic compounds known as quinic acids and derivatives. Quinic acids and derivatives are compounds containing a quinic acid moiety (or a derivative thereof), which is a cyclitol made up of a cyclohexane ring that bears four hydroxyl groups at positions 1,3.4, And 5, as well as a carboxylic acid at position 1. (3r,5r)-1,3,5-trihydroxy-4-{[(2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoyl]oxy}cyclohexane-1-carboxylic acid is found in Coffea canephora and Coptis japonica. (3r,5r)-1,3,5-trihydroxy-4-{[(2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoyl]oxy}cyclohexane-1-carboxylic acid was first documented in 2017 (PMID: 29271942). Based on a literature review a significant number of articles have been published on 4-Feruloylquinic acid (PMID: 29287473) (PMID: 35335263) (PMID: 35204253) (PMID: 30918651) (PMID: 30827583) (PMID: 29974575).
Structure
Thumb
Synonyms
ValueSource
4-FeruloylquinateGenerator
Chemical FormulaC17H20O9
Average Mass368.3380 Da
Monoisotopic Mass368.11073 Da
IUPAC Name(3R,5R)-1,3,5-trihydroxy-4-{[(2E)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoyl]oxy}cyclohexane-1-carboxylic acid
Traditional Name(3R,5R)-1,3,5-trihydroxy-4-{[(2E)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoyl]oxy}cyclohexane-1-carboxylic acid
CAS Registry NumberNot Available
SMILES
COC1=CC(\C=C\C(=O)OC2[C@H](O)CC(O)(C[C@H]2O)C(O)=O)=CC=C1O
InChI Identifier
InChI=1S/C17H20O9/c1-25-13-6-9(2-4-10(13)18)3-5-14(21)26-15-11(19)7-17(24,16(22)23)8-12(15)20/h2-6,11-12,15,18-20,24H,7-8H2,1H3,(H,22,23)/b5-3+/t11-,12-,15?,17?/m1/s1
InChI KeyVTMFDSJJVNQXLT-XQCMRRNBSA-N
Experimental Spectra
Not Available
Predicted Spectra
Spectrum TypeDescriptionDepositor IDDepositor OrganizationDepositorDeposition DateView
1D NMR13C NMR Spectrum (1D, 25 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 100 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 252 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 1000 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 50 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 200 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 75 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 300 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 101 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 400 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 126 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 500 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 151 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 600 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 176 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 700 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 201 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 800 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 226 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 900 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
Chemical Shift Submissions
Not Available
Species
Species of Origin
Species NameSourceReference
Coffea canephoraLOTUS Database
Coptis japonicaLOTUS Database
Chemical Taxonomy
Description Belongs to the class of organic compounds known as quinic acids and derivatives. Quinic acids and derivatives are compounds containing a quinic acid moiety (or a derivative thereof), which is a cyclitol made up of a cyclohexane ring that bears four hydroxyl groups at positions 1,3.4, And 5, as well as a carboxylic acid at position 1.
KingdomOrganic compounds
Super ClassOrganic oxygen compounds
ClassOrganooxygen compounds
Sub ClassAlcohols and polyols
Direct ParentQuinic acids and derivatives
Alternative Parents
Substituents
  • Quinic acid
  • Cinnamic acid ester
  • Hydroxycinnamic acid or derivatives
  • Coumaric acid or derivatives
  • Cinnamic acid or derivatives
  • Methoxyphenol
  • Phenoxy compound
  • Methoxybenzene
  • Styrene
  • Phenol ether
  • Anisole
  • 1-hydroxy-2-unsubstituted benzenoid
  • Phenol
  • Fatty acid ester
  • Cyclohexanol
  • Alkyl aryl ether
  • Fatty acyl
  • Benzenoid
  • Hydroxy acid
  • Dicarboxylic acid or derivatives
  • Monocyclic benzene moiety
  • Alpha-hydroxy acid
  • Alpha,beta-unsaturated carboxylic ester
  • Enoate ester
  • Tertiary alcohol
  • Secondary alcohol
  • Carboxylic acid ester
  • Polyol
  • Ether
  • Carboxylic acid
  • Carboxylic acid derivative
  • Organic oxide
  • Hydrocarbon derivative
  • Carbonyl group
  • Aromatic homomonocyclic compound
Molecular FrameworkAromatic homomonocyclic compounds
External DescriptorsNot Available
Physical Properties
StateNot Available
Experimental Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Predicted Properties
PropertyValueSource
logP0.23ALOGPS
logP-0.12ChemAxon
logS-2.1ALOGPS
pKa (Strongest Acidic)3.39ChemAxon
pKa (Strongest Basic)-3.2ChemAxon
Physiological Charge-1ChemAxon
Hydrogen Acceptor Count8ChemAxon
Hydrogen Donor Count5ChemAxon
Polar Surface Area153.75 ŲChemAxon
Rotatable Bond Count6ChemAxon
Refractivity87.72 m³·mol⁻¹ChemAxon
Polarizability35.87 ųChemAxon
Number of Rings2ChemAxon
BioavailabilityYesChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleNoChemAxon
MDDR-like RuleNoChemAxon
HMDB IDNot Available
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FoodDB IDNot Available
KNApSAcK IDC00055232
Chemspider ID8352553
KEGG Compound IDNot Available
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkNot Available
METLIN IDNot Available
PubChem Compound10177048
PDB IDNot Available
ChEBI ID189458
Good Scents IDNot Available
References
General References
  1. Spreng S, Hofmann T: Activity-Guided Identification of in Vitro Antioxidants in Beer. J Agric Food Chem. 2018 Jan 24;66(3):720-731. doi: 10.1021/acs.jafc.7b05674. Epub 2018 Jan 16. [PubMed:29287473 ]
  2. Mashiane P, Shoko T, Manhivi V, Slabbert R, Sultanbawa Y, Sivakumar D: A Comparison of Bioactive Metabolites, Antinutrients, and Bioactivities of African Pumpkin Leaves (Momordica balsamina L.) Cooked by Different Culinary Techniques. Molecules. 2022 Mar 15;27(6):1901. doi: 10.3390/molecules27061901. [PubMed:35335263 ]
  3. Rzasa-Duran E, Kryczyk-Poprawa A, Drabicki D, Podkowa A, Sulkowska-Ziaja K, Szewczyk A, Kala K, Opoka W, Zieba P, Fidurski M, Muszynska B: Yerba Mate as a Source of Elements and Bioactive Compounds with Antioxidant Activity. Antioxidants (Basel). 2022 Feb 12;11(2):371. doi: 10.3390/antiox11020371. [PubMed:35204253 ]
  4. Cheng K, Dong W, Long Y, Zhao J, Hu R, Zhang Y, Zhu K: Evaluation of the impact of different drying methods on the phenolic compounds, antioxidant activity, and in vitro digestion of green coffee beans. Food Sci Nutr. 2019 Feb 11;7(3):1084-1095. doi: 10.1002/fsn3.948. eCollection 2019 Mar. [PubMed:30918651 ]
  5. Cheiran KP, Raimundo VP, Manfroi V, Anzanello MJ, Kahmann A, Rodrigues E, Frazzon J: Simultaneous identification of low-molecular weight phenolic and nitrogen compounds in craft beers by HPLC-ESI-MS/MS. Food Chem. 2019 Jul 15;286:113-122. doi: 10.1016/j.foodchem.2019.01.198. Epub 2019 Feb 8. [PubMed:30827583 ]
  6. De Rosso M, Colomban S, Flamini R, Navarini L: UHPLC-ESI-QqTOF-MS/MS characterization of minor chlorogenic acids in roasted Coffea arabica from different geographical origin. J Mass Spectrom. 2018 Sep;53(9):763-771. doi: 10.1002/jms.4263. Epub 2018 Aug 9. [PubMed:29974575 ]
  7. Mariotti-Celis MS, Martinez-Cifuentes M, Huaman-Castilla N, Vargas-Gonzalez M, Pedreschi F, Perez-Correa JR: The Antioxidant and Safety Properties of Spent Coffee Ground Extracts Impacted by the Combined Hot Pressurized Liquid Extraction-Resin Purification Process. Molecules. 2017 Dec 22;23(1):21. doi: 10.3390/molecules23010021. [PubMed:29271942 ]
  8. Jeon JS, Kim HT, Jeong IH, Hong SR, Oh MS, Park KH, Shim JH, Abd El-Aty AM: Determination of chlorogenic acids and caffeine in homemade brewed coffee prepared under various conditions. J Chromatogr B Analyt Technol Biomed Life Sci. 2017 Oct 1;1064:115-123. doi: 10.1016/j.jchromb.2017.08.041. Epub 2017 Aug 31. [PubMed:28918319 ]
  9. Kraehenbuehl K, Page-Zoerkler N, Mauroux O, Gartenmann K, Blank I, Bel-Rhlid R: Selective enzymatic hydrolysis of chlorogenic acid lactones in a model system and in a coffee extract. Application to reduction of coffee bitterness. Food Chem. 2017 Mar 1;218:9-14. doi: 10.1016/j.foodchem.2016.09.055. Epub 2016 Sep 8. [PubMed:27719962 ]
  10. LOTUS database [Link]