| Record Information |
|---|
| Version | 2.0 |
|---|
| Created at | 2022-09-02 02:47:20 UTC |
|---|
| Updated at | 2022-09-02 02:47:20 UTC |
|---|
| NP-MRD ID | NP0147227 |
|---|
| Secondary Accession Numbers | None |
|---|
| Natural Product Identification |
|---|
| Common Name | (1s,2s,5s,8s)-2,6-dimethyl-9-(propan-2-ylidene)-11-oxatricyclo[6.2.1.0¹,⁵]undec-6-en-8-ol |
|---|
| Description | Curcumenol belongs to the class of organic compounds known as guaianes. These are sesquiterpenoids with a structure based on the guaiane skeleton. Guaiane is a bicyclic compound consisting of a decahydroazulene moiety, substituted with two methyl groups and a 1-methylethyl group at the 1-, 4-, and 7-position, respectively. (1s,2s,5s,8s)-2,6-dimethyl-9-(propan-2-ylidene)-11-oxatricyclo[6.2.1.0¹,⁵]undec-6-en-8-ol is found in Curcuma phaeocaulis. (1s,2s,5s,8s)-2,6-dimethyl-9-(propan-2-ylidene)-11-oxatricyclo[6.2.1.0¹,⁵]undec-6-en-8-ol was first documented in 2022 (PMID: 36016561). Based on a literature review a small amount of articles have been published on Curcumenol (PMID: 35795557) (PMID: 35795276) (PMID: 35718518). |
|---|
| Structure | C[C@H]1CC[C@H]2C(C)=C[C@]3(O)O[C@@]12CC3=C(C)C InChI=1S/C15H22O2/c1-9(2)13-8-14-11(4)5-6-12(14)10(3)7-15(13,16)17-14/h7,11-12,16H,5-6,8H2,1-4H3/t11-,12-,14-,15-/m0/s1 |
|---|
| Synonyms | Not Available |
|---|
| Chemical Formula | C15H22O2 |
|---|
| Average Mass | 234.3390 Da |
|---|
| Monoisotopic Mass | 234.16198 Da |
|---|
| IUPAC Name | Not Available |
|---|
| Traditional Name | Not Available |
|---|
| CAS Registry Number | Not Available |
|---|
| SMILES | C[C@H]1CC[C@H]2C(C)=C[C@]3(O)O[C@@]12CC3=C(C)C |
|---|
| InChI Identifier | InChI=1S/C15H22O2/c1-9(2)13-8-14-11(4)5-6-12(14)10(3)7-15(13,16)17-14/h7,11-12,16H,5-6,8H2,1-4H3/t11-,12-,14-,15-/m0/s1 |
|---|
| InChI Key | ISFMXVMWEWLJGJ-JURCDPSOSA-N |
|---|
| Experimental Spectra |
|---|
|
| Not Available | | Predicted Spectra |
|---|
|
| | Spectrum Type | Description | Depositor ID | Depositor Organization | Depositor | Deposition Date | View |
|---|
| 1D NMR | 13C NMR Spectrum (1D, 25 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 100 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 252 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 1000 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 50 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 200 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 75 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 300 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 101 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 400 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 126 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 500 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 151 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 600 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 176 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 700 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 201 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 800 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 226 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 900 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum |
| | Chemical Shift Submissions |
|---|
|
| Not Available | | Species |
|---|
| Species of Origin | |
|---|
| Chemical Taxonomy |
|---|
| Description | Belongs to the class of organic compounds known as guaianes. These are sesquiterpenoids with a structure based on the guaiane skeleton. Guaiane is a bicyclic compound consisting of a decahydroazulene moiety, substituted with two methyl groups and a 1-methylethyl group at the 1-, 4-, and 7-position, respectively. |
|---|
| Kingdom | Organic compounds |
|---|
| Super Class | Lipids and lipid-like molecules |
|---|
| Class | Prenol lipids |
|---|
| Sub Class | Sesquiterpenoids |
|---|
| Direct Parent | Guaianes |
|---|
| Alternative Parents | |
|---|
| Substituents | - Guaiane sesquiterpenoid
- Pyran
- Oxolane
- Hemiacetal
- Oxacycle
- Organoheterocyclic compound
- Organic oxygen compound
- Hydrocarbon derivative
- Organooxygen compound
- Aliphatic heteropolycyclic compound
|
|---|
| Molecular Framework | Aliphatic heteropolycyclic compounds |
|---|
| External Descriptors | Not Available |
|---|
| Physical Properties |
|---|
| State | Not Available |
|---|
| Experimental Properties | | Property | Value | Reference |
|---|
| Melting Point | Not Available | Not Available | | Boiling Point | Not Available | Not Available | | Water Solubility | Not Available | Not Available | | LogP | Not Available | Not Available |
|
|---|
| Predicted Properties | |
|---|
| General References | - Fei C, Ji D, Tong H, Li Y, Su L, Qin Y, Bian Z, Zhang W, Mao C, Li L, Lu T: Therapeutic mechanism of Curcuma aromatica Salisb. rhizome against coronary heart disease based on integrated network pharmacology, pharmacological evaluation and lipidomics. Front Pharmacol. 2022 Aug 9;13:950749. doi: 10.3389/fphar.2022.950749. eCollection 2022. [PubMed:36016561 ]
- Yang X, Li B, Tian H, Cheng X, Zhou T, Zhao J: Curcumenol Mitigates the Inflammation and Ameliorates the Catabolism Status of the Intervertebral Discs In Vivo and In Vitro via Inhibiting the TNFalpha/NFkappaB Pathway. Front Pharmacol. 2022 Jun 20;13:905966. doi: 10.3389/fphar.2022.905966. eCollection 2022. [PubMed:35795557 ]
- Mao Z, Zhong L, Zhuang X, Liu H, Peng Y: Curcumenol Targeting YWHAG Inhibits the Pentose Phosphate Pathway and Enhances Antitumor Effects of Cisplatin. Evid Based Complement Alternat Med. 2022 Jun 26;2022:3988916. doi: 10.1155/2022/3988916. eCollection 2022. [PubMed:35795276 ]
- Wang M, Yu MT, Peng MM, Yin ZZ, Mao CQ, Su LL, Ji D, Lu TL: [Quality evaluation of Curcumae Radix from different origins based on UPLC characteristic chromatogram, multicomponent content, and chemometrics]. Zhongguo Zhong Yao Za Zhi. 2022 Jun;47(11):2964-2974. doi: 10.19540/j.cnki.cjcmm.20210823.301. [PubMed:35718518 ]
- LOTUS database [Link]
|
|---|