| Record Information |
|---|
| Version | 2.0 |
|---|
| Created at | 2022-09-01 22:32:33 UTC |
|---|
| Updated at | 2022-09-01 22:32:33 UTC |
|---|
| NP-MRD ID | NP0143712 |
|---|
| Secondary Accession Numbers | None |
|---|
| Natural Product Identification |
|---|
| Common Name | methyl (1r,9s,10s,12r,19s)-11-(acetyloxy)-12-ethyl-10-hydroxy-5-methoxy-8-methyl-8,16-diazapentacyclo[10.6.1.0¹,⁹.0²,⁷.0¹⁶,¹⁹]nonadeca-2,4,6,13-tetraene-10-carboxylate |
|---|
| Description | Vindoline belongs to the class of organic compounds known as plumeran-type alkaloids. These are alkaloids with a structure based on the plumeran skeleton. Plumeran is a pentacyclic compound that consists of a pyrrolidine ring shed to the quinoline moiety of pyrido[3,2-c]carbazole ring system. methyl (1r,9s,10s,12r,19s)-11-(acetyloxy)-12-ethyl-10-hydroxy-5-methoxy-8-methyl-8,16-diazapentacyclo[10.6.1.0¹,⁹.0²,⁷.0¹⁶,¹⁹]nonadeca-2,4,6,13-tetraene-10-carboxylate is found in Catharanthus roseus and Catharanthus trichophyllus. methyl (1r,9s,10s,12r,19s)-11-(acetyloxy)-12-ethyl-10-hydroxy-5-methoxy-8-methyl-8,16-diazapentacyclo[10.6.1.0¹,⁹.0²,⁷.0¹⁶,¹⁹]nonadeca-2,4,6,13-tetraene-10-carboxylate was first documented in 2022 (PMID: 35887145). Based on a literature review a small amount of articles have been published on Vindoline (PMID: 35947213) (PMID: 35873460) (PMID: 35722510) (PMID: 35697946). |
|---|
| Structure | CC[C@@]12C=CCN3CC[C@@]4([C@@H]13)[C@H](N(C)C1=CC(OC)=CC=C41)[C@](O)(C2OC(C)=O)C(=O)OC InChI=1S/C25H32N2O6/c1-6-23-10-7-12-27-13-11-24(19(23)27)17-9-8-16(31-4)14-18(17)26(3)20(24)25(30,22(29)32-5)21(23)33-15(2)28/h7-10,14,19-21,30H,6,11-13H2,1-5H3/t19-,20+,21?,23-,24-,25+/m1/s1 |
|---|
| Synonyms | | Value | Source |
|---|
| Vindoline, citrate, (2beta,3beta,4beta,5alpha,12beta,19alpha)-isomer | MeSH | | Vindoline, monohydrochloride, (2beta,3beta,4beta,5alpha,12beta,19alpha)-isomer | MeSH |
|
|---|
| Chemical Formula | C25H32N2O6 |
|---|
| Average Mass | 456.5390 Da |
|---|
| Monoisotopic Mass | 456.22604 Da |
|---|
| IUPAC Name | methyl (1R,9S,10S,12R,19S)-11-(acetyloxy)-12-ethyl-10-hydroxy-5-methoxy-8-methyl-8,16-diazapentacyclo[10.6.1.0^{1,9}.0^{2,7}.0^{16,19}]nonadeca-2,4,6,13-tetraene-10-carboxylate |
|---|
| Traditional Name | methyl (1R,9S,10S,12R,19S)-11-(acetyloxy)-12-ethyl-10-hydroxy-5-methoxy-8-methyl-8,16-diazapentacyclo[10.6.1.0^{1,9}.0^{2,7}.0^{16,19}]nonadeca-2,4,6,13-tetraene-10-carboxylate |
|---|
| CAS Registry Number | Not Available |
|---|
| SMILES | CC[C@@]12C=CCN3CC[C@@]4([C@@H]13)[C@H](N(C)C1=CC(OC)=CC=C41)[C@](O)(C2OC(C)=O)C(=O)OC |
|---|
| InChI Identifier | InChI=1S/C25H32N2O6/c1-6-23-10-7-12-27-13-11-24(19(23)27)17-9-8-16(31-4)14-18(17)26(3)20(24)25(30,22(29)32-5)21(23)33-15(2)28/h7-10,14,19-21,30H,6,11-13H2,1-5H3/t19-,20+,21?,23-,24-,25+/m1/s1 |
|---|
| InChI Key | CXBGOBGJHGGWIE-VJAGLATISA-N |
|---|
| Experimental Spectra |
|---|
|
| Not Available | | Predicted Spectra |
|---|
|
| | Spectrum Type | Description | Depositor ID | Depositor Organization | Depositor | Deposition Date | View |
|---|
| 1D NMR | 13C NMR Spectrum (1D, 25 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 100 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 252 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 1000 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 50 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 200 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 75 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 300 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 101 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 400 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 126 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 500 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 151 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 600 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 176 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 700 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 201 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 800 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 226 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 900 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum |
| | Chemical Shift Submissions |
|---|
|
| Not Available | | Species |
|---|
| Species of Origin | |
|---|
| Chemical Taxonomy |
|---|
| Description | Belongs to the class of organic compounds known as plumeran-type alkaloids. These are alkaloids with a structure based on the plumeran skeleton. Plumeran is a pentacyclic compound that consists of a pyrrolidine ring shed to the quinoline moiety of pyrido[3,2-c]carbazole ring system. |
|---|
| Kingdom | Organic compounds |
|---|
| Super Class | Alkaloids and derivatives |
|---|
| Class | Plumeran-type alkaloids |
|---|
| Sub Class | Not Available |
|---|
| Direct Parent | Plumeran-type alkaloids |
|---|
| Alternative Parents | |
|---|
| Substituents | - Plumeran-type alkaloid
- Carbazole
- Indole or derivatives
- Dialkylarylamine
- Tertiary aliphatic/aromatic amine
- Anisole
- Aralkylamine
- Alkyl aryl ether
- Benzenoid
- N-alkylpyrrolidine
- Dicarboxylic acid or derivatives
- Methyl ester
- Tertiary alcohol
- Pyrrolidine
- Cyclic alcohol
- Tertiary aliphatic amine
- Tertiary amine
- Carboxylic acid ester
- Amino acid or derivatives
- Azacycle
- Organoheterocyclic compound
- Ether
- Carboxylic acid derivative
- Organic nitrogen compound
- Organic oxygen compound
- Organopnictogen compound
- Organic oxide
- Hydrocarbon derivative
- Organooxygen compound
- Organonitrogen compound
- Carbonyl group
- Amine
- Alcohol
- Aromatic heteropolycyclic compound
|
|---|
| Molecular Framework | Aromatic heteropolycyclic compounds |
|---|
| External Descriptors | Not Available |
|---|
| Physical Properties |
|---|
| State | Not Available |
|---|
| Experimental Properties | | Property | Value | Reference |
|---|
| Melting Point | Not Available | Not Available | | Boiling Point | Not Available | Not Available | | Water Solubility | Not Available | Not Available | | LogP | Not Available | Not Available |
|
|---|
| Predicted Properties | |
|---|
| General References | - Lemos Cruz P, Carqueijeiro I, Koudounas K, Bomzan DP, Stander EA, Abdallah C, Kulagina N, Oudin A, Lanoue A, Giglioli-Guivarc'h N, Nagegowda DA, Papon N, Besseau S, Clastre M, Courdavault V: Identification of a second 16-hydroxytabersonine-O-methyltransferase suggests an evolutionary relationship between alkaloid and flavonoid metabolisms in Catharanthus roseus. Protoplasma. 2023 Mar;260(2):607-624. doi: 10.1007/s00709-022-01801-x. Epub 2022 Aug 10. [PubMed:35947213 ]
- Huang HH, Lin TL, Lee WJ, Chen SC, Lai WF, Lu CC, Lai HC, Chen CY: Impact of Metabolic Surgery on Gut Microbiota and Sera Metabolomic Patterns among Patients with Diabetes. Int J Mol Sci. 2022 Jul 14;23(14):7797. doi: 10.3390/ijms23147797. [PubMed:35887145 ]
- Zhou P, Chen M: Exploration of the Mechanisms of Differential Indole Alkaloid Biosynthesis in Dedifferentiated and Cambial Meristematic Cells of Catharanthus roseus Using Transcriptome Sequencing. Front Genet. 2022 Jun 30;13:867064. doi: 10.3389/fgene.2022.867064. eCollection 2022. [PubMed:35873460 ]
- Nishanth MJ, Simon B: Understanding the possible influence of Pumilio RNA binding proteins on terpenoid indole alkaloid biosynthesis in Catharanthus roseus. Physiol Mol Biol Plants. 2022 May;28(5):963-969. doi: 10.1007/s12298-022-01193-5. Epub 2022 Jun 6. [PubMed:35722510 ]
- Raorane ML, Manz C, Hildebrandt S, Mielke M, Thieme M, Keller J, Bunzel M, Nick P: Cell type matters: competence for alkaloid metabolism differs in two seed-derived cell strains of Catharanthus roseus. Protoplasma. 2023 Mar;260(2):349-369. doi: 10.1007/s00709-022-01781-y. Epub 2022 Jun 13. [PubMed:35697946 ]
- LOTUS database [Link]
|
|---|