Np mrd loader

Record Information
Version2.0
Created at2022-09-01 21:08:54 UTC
Updated at2022-09-01 21:08:55 UTC
NP-MRD IDNP0142572
Secondary Accession NumbersNone
Natural Product Identification
Common Name(2s,3r,4r)-4,8-diamino-2,3,5,7,9-pentahydroxy-n-[1-(c-hydroxycarbonimidoyl)-2-(c-hydroxycarbonimidoylamino)ethyl]nonanimidic acid
DescriptionZwittermicin A belongs to the class of organic compounds known as hybrid peptides. Hybrid peptides are compounds containing at least two different types of amino acids (alpha, beta, gamma, delta) linked to each other through a peptide bond. (2s,3r,4r)-4,8-diamino-2,3,5,7,9-pentahydroxy-n-[1-(c-hydroxycarbonimidoyl)-2-(c-hydroxycarbonimidoylamino)ethyl]nonanimidic acid was first documented in 2009 (PMID: 19898544). Based on a literature review a significant number of articles have been published on Zwittermicin A (PMID: 35157135) (PMID: 34400725) (PMID: 31622586) (PMID: 30533731) (PMID: 28149292) (PMID: 25556027).
Structure
Thumb
SynonymsNot Available
Chemical FormulaC13H28N6O8
Average Mass396.4010 Da
Monoisotopic Mass396.19686 Da
IUPAC Name(2S,3R,4R)-4,8-diamino-2,3,5,7,9-pentahydroxy-N-[1-(C-hydroxycarbonimidoyl)-2-[(C-hydroxycarbonimidoyl)amino]ethyl]nonanimidic acid
Traditional Name(2S,3R,4R)-4,8-diamino-2,3,5,7,9-pentahydroxy-N-[1-(C-hydroxycarbonimidoyl)-2-(C-hydroxycarbonimidoylamino)ethyl]nonanimidic acid
CAS Registry NumberNot Available
SMILES
NC(CO)C(O)CC(O)[C@@H](N)[C@@H](O)[C@H](O)C(O)=NC(CNC(O)=N)C(O)=N
InChI Identifier
InChI=1S/C13H28N6O8/c14-4(3-20)6(21)1-7(22)8(15)9(23)10(24)12(26)19-5(11(16)25)2-18-13(17)27/h4-10,20-24H,1-3,14-15H2,(H2,16,25)(H,19,26)(H3,17,18,27)/t4?,5?,6?,7?,8-,9-,10+/m1/s1
InChI KeyFYIPKJHNWFVEIR-WMNLMFOASA-N
Experimental Spectra
Not Available
Predicted Spectra
Spectrum TypeDescriptionDepositor IDDepositor OrganizationDepositorDeposition DateView
1D NMR13C NMR Spectrum (1D, 25 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 100 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 252 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 1000 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 50 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 200 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 75 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 300 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 101 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 400 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 126 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 500 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 151 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 600 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 176 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 700 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 201 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 800 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 226 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 900 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
Chemical Shift Submissions
Not Available
Species
Species of OriginNot Available
Chemical Taxonomy
Description Belongs to the class of organic compounds known as hybrid peptides. Hybrid peptides are compounds containing at least two different types of amino acids (alpha, beta, gamma, delta) linked to each other through a peptide bond.
KingdomOrganic compounds
Super ClassOrganic acids and derivatives
ClassPeptidomimetics
Sub ClassHybrid peptides
Direct ParentHybrid peptides
Alternative Parents
Substituents
  • Hybrid peptide
  • N-acyl-alpha amino acid or derivatives
  • Gamma amino acid or derivatives
  • Alpha-amino acid or derivatives
  • N-substituted-alpha-amino acid
  • Fatty acyl
  • N-acyl-amine
  • Monosaccharide
  • Fatty amide
  • 1,3-aminoalcohol
  • Urea
  • Secondary carboxylic acid amide
  • Secondary alcohol
  • Primary carboxylic acid amide
  • Carbonic acid derivative
  • Carboxamide group
  • Amino acid or derivatives
  • 1,2-aminoalcohol
  • Polyol
  • Carboxylic acid derivative
  • Organic nitrogen compound
  • Organic oxygen compound
  • Organopnictogen compound
  • Organic oxide
  • Hydrocarbon derivative
  • Primary amine
  • Primary alcohol
  • Organooxygen compound
  • Organonitrogen compound
  • Primary aliphatic amine
  • Carbonyl group
  • Amine
  • Alcohol
  • Aliphatic acyclic compound
Molecular FrameworkAliphatic acyclic compounds
External DescriptorsNot Available
Physical Properties
StateNot Available
Experimental Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Predicted Properties
PropertyValueSource
logP-2.5ALOGPS
logP-12ChemAxon
logS-2.8ALOGPS
pKa (Strongest Acidic)-3.2ChemAxon
pKa (Strongest Basic)15.01ChemAxon
Physiological Charge2ChemAxon
Hydrogen Acceptor Count14ChemAxon
Hydrogen Donor Count13ChemAxon
Polar Surface Area285.97 ŲChemAxon
Rotatable Bond Count12ChemAxon
Refractivity111.21 m³·mol⁻¹ChemAxon
Polarizability37.86 ųChemAxon
Number of Rings0ChemAxon
BioavailabilityNoChemAxon
Rule of FiveNoChemAxon
Ghose FilterNoChemAxon
Veber's RuleNoChemAxon
MDDR-like RuleNoChemAxon
HMDB IDNot Available
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FoodDB IDNot Available
KNApSAcK IDNot Available
Chemspider ID19981807
KEGG Compound IDNot Available
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkZwittermicin A
METLIN IDNot Available
PubChem Compound21120914
PDB IDNot Available
ChEBI IDNot Available
Good Scents IDNot Available
References
General References
  1. Dhole A, Shelat H: Non-Rhizobial Endophytes Associated with Nodules of Vigna radiata L. and Their Combined Activity with Rhizobium sp. Curr Microbiol. 2022 Feb 14;79(4):103. doi: 10.1007/s00284-022-02792-x. [PubMed:35157135 ]
  2. Sun H, Xiang X, Li Q, Lin H, Wang X, Sun J, Luo L, Zheng A: Comparative genome analysis of Bacillus thuringiensis strain HD521 and HS18-1. Sci Rep. 2021 Aug 16;11(1):16590. doi: 10.1038/s41598-021-96133-w. [PubMed:34400725 ]
  3. Prasertanan T, Palmer DRJ: The kanosamine biosynthetic pathway in Bacillus cereus UW85: Functional and kinetic characterization of KabA, KabB, and KabC. Arch Biochem Biophys. 2019 Nov 15;676:108139. doi: 10.1016/j.abb.2019.108139. Epub 2019 Oct 14. [PubMed:31622586 ]
  4. Schreier HJ: Draft Genome Sequence of Marine Bacillus sp. Strain ISO11, a Candidate Finfish and Shellfish Probiotic. Microbiol Resour Announc. 2018 Oct 18;7(15):e01227-18. doi: 10.1128/MRA.01227-18. eCollection 2018 Oct. [PubMed:30533731 ]
  5. Hollensteiner J, Wemheuer F, Harting R, Kolarzyk AM, Diaz Valerio SM, Poehlein A, Brzuszkiewicz EB, Nesemann K, Braus-Stromeyer SA, Braus GH, Daniel R, Liesegang H: Bacillus thuringiensis and Bacillus weihenstephanensis Inhibit the Growth of Phytopathogenic Verticillium Species. Front Microbiol. 2017 Jan 18;7:2171. doi: 10.3389/fmicb.2016.02171. eCollection 2016. [PubMed:28149292 ]
  6. Zhu L, Tian LJ, Zheng J, Gao QL, Wang YY, Peng DH, Ruan LF, Sun M: Complete genome sequence of Bacillus thuringiensis serovar galleriae strain HD-29, a typical strain of commercial biopesticide. J Biotechnol. 2015 Feb 10;195:108-9. doi: 10.1016/j.jbiotec.2014.12.021. Epub 2014 Dec 30. [PubMed:25556027 ]
  7. Park H, Kevany BM, Dyer DH, Thomas MG, Forest KT: A polyketide synthase acyltransferase domain structure suggests a recognition mechanism for its hydroxymalonyl-acyl carrier protein substrate. PLoS One. 2014 Oct 23;9(10):e110965. doi: 10.1371/journal.pone.0110965. eCollection 2014. [PubMed:25340352 ]
  8. Hao Z, Yan L, Liu J, Song F, Zhang J, Li X: Extraction of antibiotic zwittermicin A from Bacillus thuringiensis by macroporous resin and silica gel column chromatography. Biotechnol Appl Biochem. 2015 May-Jun;62(3):369-74. doi: 10.1002/bab.1277. Epub 2014 Sep 5. [PubMed:25099664 ]
  9. Jain S, Vaishnav A, Kasotia A, Kumari S, Gaur RK, Choudhary DK: Rhizobacterium-mediated growth promotion and expression of stress enzymes in Glycine max L. Merrill against Fusarium wilt upon challenge inoculation. World J Microbiol Biotechnol. 2014 Feb;30(2):399-406. doi: 10.1007/s11274-013-1455-5. Epub 2013 Aug 11. [PubMed:23933805 ]
  10. Luo Y, Ruan LF, Zhao CM, Wang CX, Peng DH, Sun M: Validation of the intact zwittermicin A biosynthetic gene cluster and discovery of a complementary resistance mechanism in Bacillus thuringiensis. Antimicrob Agents Chemother. 2011 Sep;55(9):4161-9. doi: 10.1128/AAC.00111-11. Epub 2011 Jul 5. [PubMed:21730118 ]
  11. Muchalski H, Hong KB, Johnston JN: Bronsted acid-promoted azide-olefin [3 + 2] cycloadditions for the preparation of contiguous aminopolyols: The importance of disiloxane ring size to a diastereoselective, bidirectional approach to zwittermicin A. Beilstein J Org Chem. 2010 Dec 20;6:1206-10. doi: 10.3762/bjoc.6.138. [PubMed:21283562 ]
  12. Chan YA, Thomas MG: Recognition of (2S)-aminomalonyl-acyl carrier protein (ACP) and (2R)-hydroxymalonyl-ACP by acyltransferases in zwittermicin A biosynthesis. Biochemistry. 2010 May 4;49(17):3667-77. doi: 10.1021/bi100141n. [PubMed:20353188 ]
  13. Rogers EW, Dalisay DS, Molinski TF: Zwittermicin A: synthesis of analogs and structure-activity studies. Bioorg Med Chem Lett. 2010 Apr 1;20(7):2183-5. doi: 10.1016/j.bmcl.2010.02.032. Epub 2010 Feb 11. [PubMed:20189808 ]
  14. Athukorala SN, Fernando WG, Rashid KY: Identification of antifungal antibiotics of Bacillus species isolated from different microhabitats using polymerase chain reaction and MALDI-TOF mass spectrometry. Can J Microbiol. 2009 Sep;55(9):1021-32. doi: 10.1139/w09-067. [PubMed:19898544 ]
  15. Bumpus SB, Evans BS, Thomas PM, Ntai I, Kelleher NL: A proteomics approach to discovering natural products and their biosynthetic pathways. Nat Biotechnol. 2009 Oct;27(10):951-6. doi: 10.1038/nbt.1565. Epub 2009 Sep 20. [PubMed:19767731 ]
  16. Rogers EW, Molinski TF: (+)-Zwittermicin A. Rapid assembly of C9-C15 and a formal total synthesis. J Org Chem. 2009 Oct 16;74(20):7660-4. doi: 10.1021/jo901007v. [PubMed:19746943 ]
  17. Chan YA, Thomas MG: Formation and characterization of acyl carrier protein-linked polyketide synthase extender units. Methods Enzymol. 2009;459:143-63. doi: 10.1016/S0076-6879(09)04607-2. [PubMed:19362639 ]
  18. Zhang X, Liang Z, Siddiqui ZA, Gong Y, Yu Z, Chen S: Efficient screening and breeding of Bacillus thuringiensis subsp. kurstaki for high toxicity against Spodoptera exigua and Heliothis armigera. J Ind Microbiol Biotechnol. 2009 Jun;36(6):815-20. doi: 10.1007/s10295-009-0556-5. Epub 2009 Apr 1. [PubMed:19337765 ]
  19. Kevany BM, Rasko DA, Thomas MG: Characterization of the complete zwittermicin A biosynthesis gene cluster from Bacillus cereus. Appl Environ Microbiol. 2009 Feb;75(4):1144-55. doi: 10.1128/AEM.02518-08. Epub 2008 Dec 19. [PubMed:19098220 ]
  20. LOTUS database [Link]