| Record Information |
|---|
| Version | 2.0 |
|---|
| Created at | 2022-06-29 22:14:10 UTC |
|---|
| Updated at | 2022-06-29 22:14:11 UTC |
|---|
| NP-MRD ID | NP0141163 |
|---|
| Secondary Accession Numbers | None |
|---|
| Natural Product Identification |
|---|
| Common Name | Coronarin A |
|---|
| Description | Coronarin A belongs to the class of organic compounds known as colensane and clerodane diterpenoids. These are diterpenoids with a structure based on the clerodane or the colensane skeleton. Clerodanes arise from labdanes by two methyl migrations. Coronarin A is found in Hedychium coronarium and Hedychium gardnerianum. Coronarin A was first documented in 2008 (PMID: 18310958). Based on a literature review a small amount of articles have been published on Coronarin A (PMID: 19960422) (PMID: 19385181) (PMID: 33968897) (PMID: 22293485). |
|---|
| Structure | CC1(C)CCC[C@@]2(C)[C@H]1C[C@H](O)C(=C)[C@@H]2\C=C\C1=COC=C1 InChI=1S/C20H28O2/c1-14-16(7-6-15-8-11-22-13-15)20(4)10-5-9-19(2,3)18(20)12-17(14)21/h6-8,11,13,16-18,21H,1,5,9-10,12H2,2-4H3/b7-6+/t16-,17-,18-,20+/m0/s1 |
|---|
| Synonyms | Not Available |
|---|
| Chemical Formula | C20H28O2 |
|---|
| Average Mass | 300.4420 Da |
|---|
| Monoisotopic Mass | 300.20893 Da |
|---|
| IUPAC Name | Not Available |
|---|
| Traditional Name | Not Available |
|---|
| CAS Registry Number | Not Available |
|---|
| SMILES | CC1(C)CCC[C@@]2(C)[C@H]1C[C@H](O)C(=C)[C@@H]2\C=C\C1=COC=C1 |
|---|
| InChI Identifier | InChI=1S/C20H28O2/c1-14-16(7-6-15-8-11-22-13-15)20(4)10-5-9-19(2,3)18(20)12-17(14)21/h6-8,11,13,16-18,21H,1,5,9-10,12H2,2-4H3/b7-6+/t16-,17-,18-,20+/m0/s1 |
|---|
| InChI Key | RHCBUXSXDFNUAG-UDMCIFMYSA-N |
|---|
| Experimental Spectra |
|---|
|
| Not Available | | Predicted Spectra |
|---|
|
| | Spectrum Type | Description | Depositor ID | Depositor Organization | Depositor | Deposition Date | View |
|---|
| 1D NMR | 13C NMR Spectrum (1D, 25 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 100 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 252 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 1000 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 50 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 200 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 75 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 300 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 101 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 400 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 126 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 500 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 151 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 600 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 176 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 700 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 201 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 800 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 226 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 900 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum |
| | Chemical Shift Submissions |
|---|
|
| Not Available | | Species |
|---|
| Species of Origin | |
|---|
| Chemical Taxonomy |
|---|
| Description | Belongs to the class of organic compounds known as colensane and clerodane diterpenoids. These are diterpenoids with a structure based on the clerodane or the colensane skeleton. Clerodanes arise from labdanes by two methyl migrations. |
|---|
| Kingdom | Organic compounds |
|---|
| Super Class | Lipids and lipid-like molecules |
|---|
| Class | Prenol lipids |
|---|
| Sub Class | Diterpenoids |
|---|
| Direct Parent | Colensane and clerodane diterpenoids |
|---|
| Alternative Parents | |
|---|
| Substituents | - Clerodane diterpenoid
- Heteroaromatic compound
- Furan
- Cyclic alcohol
- Secondary alcohol
- Oxacycle
- Organoheterocyclic compound
- Organic oxygen compound
- Hydrocarbon derivative
- Organooxygen compound
- Alcohol
- Aromatic heteropolycyclic compound
|
|---|
| Molecular Framework | Aromatic heteropolycyclic compounds |
|---|
| External Descriptors | Not Available |
|---|
| Physical Properties |
|---|
| State | Not Available |
|---|
| Experimental Properties | | Property | Value | Reference |
|---|
| Melting Point | Not Available | Not Available | | Boiling Point | Not Available | Not Available | | Water Solubility | Not Available | Not Available | | LogP | Not Available | Not Available |
|
|---|
| Predicted Properties | |
|---|
| General References | - Kumrit I, Suksamrarn A, Meepawpan P, Songsri S, Nuntawong N: Labdane-type diterpenes from Hedychium gardnerianum with potent cytotoxicity against human small cell lung cancer cells. Phytother Res. 2010 Jul;24(7):1009-13. doi: 10.1002/ptr.3057. [PubMed:19960422 ]
- Luo M, Lei L, Lin H: [Studies on chemical constituents from rhizomes of Hedychium chrysoleucum]. Zhongguo Zhong Yao Za Zhi. 2009 Jan;34(2):180-2. [PubMed:19385181 ]
- Singamaneni V, Lone B, Singh J, Kumar P, Gairola S, Singh S, Gupta P: Coronarin K and L: Two Novel Labdane Diterpenes From Roscoea purpurea: An Ayurvedic Crude Drug. Front Chem. 2021 Apr 21;9:642073. doi: 10.3389/fchem.2021.642073. eCollection 2021. [PubMed:33968897 ]
- Kiem PV, Anh Hle T, Nhiem NX, Minh CV, Thuy NT, Yen PH, Hang DT, Tai BH, Mathema VB, Koh YS, Kim YH: Labdane-type diterpenoids from the rhizomes of Hedychium coronarium inhibit lipopolysaccharide-stimulated production of pro-inflammatory cytokines in bone marrow-derived dendritic cells. Chem Pharm Bull (Tokyo). 2012;60(2):246-50. doi: 10.1248/cpb.60.246. [PubMed:22293485 ]
- Miyake T, Uda K, Kinoshita M, Fujii M, Akita H: Concise syntheses of coronarin A, coronarin E, austrochaparol and pacovatinin A. Chem Pharm Bull (Tokyo). 2008 Mar;56(3):398-403. doi: 10.1248/cpb.56.398. [PubMed:18310958 ]
|
|---|