| Record Information |
|---|
| Version | 2.0 |
|---|
| Created at | 2022-06-29 21:56:39 UTC |
|---|
| Updated at | 2022-06-29 21:56:39 UTC |
|---|
| NP-MRD ID | NP0140882 |
|---|
| Secondary Accession Numbers | None |
|---|
| Natural Product Identification |
|---|
| Common Name | Pennogenin |
|---|
| Description | Pennogenin belongs to the class of organic compounds known as triterpenoids. These are terpene molecules containing six isoprene units. Thus, pennogenin is considered to be a sterol. Pennogenin is found in Dioscorea bulbifera, Dioscorea composita, Dracaena cambodiana, Paris polyphylla and Polygonatum stenophyllum. Pennogenin was first documented in 2020 (PMID: 32488904). Based on a literature review a significant number of articles have been published on pennogenin (PMID: 32378425) (PMID: 33460752) (PMID: 32315895) (PMID: 34279421) (PMID: 35610010) (PMID: 35335224). |
|---|
| Structure | C[C@@H]1[C@@]2(CC[C@@H](C)CO2)O[C@H]2C[C@H]3[C@@H]4CC=C5C[C@@H](O)CC[C@]5(C)[C@H]4CC[C@]3(C)[C@@]12O InChI=1S/C27H42O4/c1-16-7-12-26(30-15-16)17(2)27(29)23(31-26)14-22-20-6-5-18-13-19(28)8-10-24(18,3)21(20)9-11-25(22,27)4/h5,16-17,19-23,28-29H,6-15H2,1-4H3/t16-,17-,19+,20-,21+,22+,23+,24+,25+,26-,27-/m1/s1 |
|---|
| Synonyms | | Value | Source |
|---|
| (25R)-Spirost-5-ene-3beta,17-diol | ChEBI | | (25R)-Spirost-5-ene-3b,17-diol | Generator | | (25R)-Spirost-5-ene-3β,17-diol | Generator |
|
|---|
| Chemical Formula | C27H42O4 |
|---|
| Average Mass | 430.6290 Da |
|---|
| Monoisotopic Mass | 430.30831 Da |
|---|
| IUPAC Name | Not Available |
|---|
| Traditional Name | Not Available |
|---|
| CAS Registry Number | Not Available |
|---|
| SMILES | C[C@@H]1[C@@]2(CC[C@@H](C)CO2)O[C@H]2C[C@H]3[C@@H]4CC=C5C[C@@H](O)CC[C@]5(C)[C@H]4CC[C@]3(C)[C@@]12O |
|---|
| InChI Identifier | InChI=1S/C27H42O4/c1-16-7-12-26(30-15-16)17(2)27(29)23(31-26)14-22-20-6-5-18-13-19(28)8-10-24(18,3)21(20)9-11-25(22,27)4/h5,16-17,19-23,28-29H,6-15H2,1-4H3/t16-,17-,19+,20-,21+,22+,23+,24+,25+,26-,27-/m1/s1 |
|---|
| InChI Key | SYYHBUHOUUETMI-WJOMMTHPSA-N |
|---|
| Experimental Spectra |
|---|
|
| Not Available | | Predicted Spectra |
|---|
|
| | Spectrum Type | Description | Depositor ID | Depositor Organization | Depositor | Deposition Date | View |
|---|
| 1D NMR | 13C NMR Spectrum (1D, 25 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 100 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 252 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 1000 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 50 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 200 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 75 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 300 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 101 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 400 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 126 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 500 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 151 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 600 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 176 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 700 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 201 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 800 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 226 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 900 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum |
| | Chemical Shift Submissions |
|---|
|
| Not Available | | Species |
|---|
| Species of Origin | |
|---|
| Chemical Taxonomy |
|---|
| Description | Belongs to the class of organic compounds known as triterpenoids. These are terpene molecules containing six isoprene units. |
|---|
| Kingdom | Organic compounds |
|---|
| Super Class | Lipids and lipid-like molecules |
|---|
| Class | Prenol lipids |
|---|
| Sub Class | Triterpenoids |
|---|
| Direct Parent | Triterpenoids |
|---|
| Alternative Parents | |
|---|
| Substituents | - Triterpenoid
- Spirostane skeleton
- 3-hydroxy-delta-5-steroid
- 3-hydroxysteroid
- Hydroxysteroid
- 3-beta-hydroxy-delta-5-steroid
- 3-beta-hydroxysteroid
- 17-hydroxysteroid
- Steroid
- Delta-5-steroid
- Ketal
- Oxane
- Monosaccharide
- Tetrahydrofuran
- Tertiary alcohol
- Cyclic alcohol
- Secondary alcohol
- Oxacycle
- Organoheterocyclic compound
- Acetal
- Hydrocarbon derivative
- Alcohol
- Organooxygen compound
- Organic oxygen compound
- Aliphatic heteropolycyclic compound
|
|---|
| Molecular Framework | Aliphatic heteropolycyclic compounds |
|---|
| External Descriptors | |
|---|
| Physical Properties |
|---|
| State | Not Available |
|---|
| Experimental Properties | | Property | Value | Reference |
|---|
| Melting Point | Not Available | Not Available | | Boiling Point | Not Available | Not Available | | Water Solubility | Not Available | Not Available | | LogP | Not Available | Not Available |
|
|---|
| Predicted Properties | |
|---|
| General References | - Singh PP, Bora PS, Suresh PS, Bhatt V, Sharma U: Qualitative and quantitative determination of steroidal saponins in Trillium govanianum by UHPLC-QTOF-MS/MS and UHPLC-ELSD. Phytochem Anal. 2020 Nov;31(6):861-873. doi: 10.1002/pca.2951. Epub 2020 Jun 3. [PubMed:32488904 ]
- Singh PP, Suresh PS, Bora PS, Bhatt V, Sharma U: Govanoside B, a new steroidal saponin from rhizomes of Trillium govanianum. Nat Prod Res. 2020 May 6:1-9. doi: 10.1080/14786419.2020.1761360. [PubMed:32378425 ]
- Gupta DD, Mishra S, Verma SS, Shekher A, Rai V, Awasthee N, Das TJ, Paul D, Das SK, Tag H, Chandra Gupta S, Hui PK: Evaluation of antioxidant, anti-inflammatory and anticancer activities of diosgenin enriched Paris polyphylla rhizome extract of Indian Himalayan landraces. J Ethnopharmacol. 2021 Apr 24;270:113842. doi: 10.1016/j.jep.2021.113842. Epub 2021 Jan 16. [PubMed:33460752 ]
- Wang W, Wang W, Ge H, Li G, Shen P, Xu S, Yu B, Zhang J: Biocatalytic allylic hydroxylation of unsaturated triterpenes and steroids by Bacillus megaterium CGMCC 1.1741. Bioorg Chem. 2020 Jun;99:103826. doi: 10.1016/j.bioorg.2020.103826. Epub 2020 Apr 6. [PubMed:32315895 ]
- Lin LT, Shi YC, Choong CY, Tai CJ: The Fruits of Paris polyphylla Inhibit Colorectal Cancer Cell Migration Induced by Fusobacterium nucleatum-Derived Extracellular Vesicles. Molecules. 2021 Jul 4;26(13). pii: molecules26134081. doi: 10.3390/molecules26134081. [PubMed:34279421 ]
- Zhiyong LI, Na Z, Jianliang LI, Liang F, Yanyan J, Caifeng LI, Ling L, Xiulan H: Effcacy-oriented compatibility for Tianma (), Yanlingcao () and Bingpian () on improving cerebral ischemia stroke by network pharmacology and serum pharmacological methods. J Tradit Chin Med. 2022 Jun;42(3):408-416. doi: 10.19852/j.cnki.jtcm.2022.03.007. [PubMed:35610010 ]
- Valencia-Mejia E, Leon-Wilchez YY, Monribot-Villanueva JL, Ramirez-Vazquez M, Bonilla-Landa I, Guerrero-Analco JA: Isolation and Identification of Pennogenin Tetraglycoside from Cestrum nocturnum (Solanaceae) and Its Antifungal Activity against Fusarium kuroshium, Causal Agent of Fusarium Dieback. Molecules. 2022 Mar 13;27(6):1860. doi: 10.3390/molecules27061860. [PubMed:35335224 ]
- Hua X, Song W, Wang K, Yin X, Hao C, Duan B, Xu Z, Su T, Xue Z: Effective prediction of biosynthetic pathway genes involved in bioactive polyphyllins in Paris polyphylla. Commun Biol. 2022 Jan 13;5(1):50. doi: 10.1038/s42003-022-03000-z. [PubMed:35027659 ]
- Li Z, Tang Y, Liu Z, Fan Q, Chen M, Lin Z, Zhao C, Lin R: Hepatotoxicity induced by PPⅥ and PPⅦ in zebrafish were related to the Cholesterol disorder. Phytomedicine. 2022 Jan;95:153787. doi: 10.1016/j.phymed.2021.153787. Epub 2021 Oct 11. [PubMed:34782205 ]
- Bian Y, Zeng H, Tao H, Huang L, Du Z, Wang J, Ding K: A pectin-like polysaccharide from Polygala tenuifolia inhibits pancreatic cancer cell growth in vitro and in vivo by inducing apoptosis and suppressing autophagy. Int J Biol Macromol. 2020 Nov 1;162:107-115. doi: 10.1016/j.ijbiomac.2020.06.054. Epub 2020 Jun 9. [PubMed:32531363 ]
|
|---|