| Record Information |
|---|
| Version | 2.0 |
|---|
| Created at | 2022-06-29 21:22:14 UTC |
|---|
| Updated at | 2022-06-29 21:22:14 UTC |
|---|
| NP-MRD ID | NP0140302 |
|---|
| Secondary Accession Numbers | None |
|---|
| Natural Product Identification |
|---|
| Common Name | Sappanol |
|---|
| Description | Sappanol belongs to the class of organic compounds known as homoisoflavans. These are homoisoflavonoids with a structure based on the chromane system. Chromone is a bicyclic compound consisting of a 3,4-dihydro-1-benzopyran. Sappanol is found in Alpinia japonica. Sappanol was first documented in 2013 (PMID: 23154842). Based on a literature review a small amount of articles have been published on sappanol (PMID: 26951869) (PMID: 34607974) (PMID: 32235775) (PMID: 25248564). |
|---|
| Structure | O[C@H]1C2=C(OC[C@]1(O)CC1=CC(O)=C(O)C=C1)C=C(O)C=C2 InChI=1S/C16H16O6/c17-10-2-3-11-14(6-10)22-8-16(21,15(11)20)7-9-1-4-12(18)13(19)5-9/h1-6,15,17-21H,7-8H2/t15-,16+/m0/s1 |
|---|
| Synonyms | Not Available |
|---|
| Chemical Formula | C16H16O6 |
|---|
| Average Mass | 304.2980 Da |
|---|
| Monoisotopic Mass | 304.09469 Da |
|---|
| IUPAC Name | Not Available |
|---|
| Traditional Name | Not Available |
|---|
| CAS Registry Number | Not Available |
|---|
| SMILES | O[C@H]1C2=C(OC[C@]1(O)CC1=CC(O)=C(O)C=C1)C=C(O)C=C2 |
|---|
| InChI Identifier | InChI=1S/C16H16O6/c17-10-2-3-11-14(6-10)22-8-16(21,15(11)20)7-9-1-4-12(18)13(19)5-9/h1-6,15,17-21H,7-8H2/t15-,16+/m0/s1 |
|---|
| InChI Key | MPGFEHZDABUJFR-JKSUJKDBSA-N |
|---|
| Experimental Spectra |
|---|
|
| Not Available | | Predicted Spectra |
|---|
|
| | Spectrum Type | Description | Depositor ID | Depositor Organization | Depositor | Deposition Date | View |
|---|
| 1D NMR | 13C NMR Spectrum (1D, 25 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 100 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 252 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 1000 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 50 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 200 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 75 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 300 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 101 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 400 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 126 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 500 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 151 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 600 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 176 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 700 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 201 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 800 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 226 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 900 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum |
| | Chemical Shift Submissions |
|---|
|
| Not Available | | Species |
|---|
| Species of Origin | |
|---|
| Chemical Taxonomy |
|---|
| Description | Belongs to the class of organic compounds known as homoisoflavans. These are homoisoflavonoids with a structure based on the chromane system. Chromone is a bicyclic compound consisting of a 3,4-dihydro-1-benzopyran. |
|---|
| Kingdom | Organic compounds |
|---|
| Super Class | Phenylpropanoids and polyketides |
|---|
| Class | Homoisoflavonoids |
|---|
| Sub Class | Homoisoflavans |
|---|
| Direct Parent | Homoisoflavans |
|---|
| Alternative Parents | |
|---|
| Substituents | - Homoisoflavan
- Chromane
- Benzopyran
- 1-benzopyran
- Catechol
- Alkyl aryl ether
- 1-hydroxy-4-unsubstituted benzenoid
- 1-hydroxy-2-unsubstituted benzenoid
- Phenol
- Monocyclic benzene moiety
- Benzenoid
- Tertiary alcohol
- Secondary alcohol
- 1,2-diol
- Polyol
- Ether
- Oxacycle
- Organoheterocyclic compound
- Organooxygen compound
- Hydrocarbon derivative
- Organic oxygen compound
- Alcohol
- Aromatic heteropolycyclic compound
|
|---|
| Molecular Framework | Aromatic heteropolycyclic compounds |
|---|
| External Descriptors | Not Available |
|---|
| Physical Properties |
|---|
| State | Not Available |
|---|
| Experimental Properties | | Property | Value | Reference |
|---|
| Melting Point | Not Available | Not Available | | Boiling Point | Not Available | Not Available | | Water Solubility | Not Available | Not Available | | LogP | Not Available | Not Available |
|
|---|
| Predicted Properties | |
|---|
| General References | - Mitani K, Takano F, Kawabata T, Allam AE, Ota M, Takahashi T, Yahagi N, Sakurada C, Fushiya S, Ohta T: Suppression of melanin synthesis by the phenolic constituents of sappanwood (Caesalpinia sappan). Planta Med. 2013 Jan;79(1):37-44. doi: 10.1055/s-0032-1327897. Epub 2012 Nov 15. [PubMed:23154842 ]
- Mueller M, Weinmann D, Toegel S, Holzer W, Unger FM, Viernstein H: Compounds from Caesalpinia sappan with anti-inflammatory properties in macrophages and chondrocytes. Food Funct. 2016 Mar;7(3):1671-9. doi: 10.1039/c5fo01256b. [PubMed:26951869 ]
- Liu N, Wang X, Wu H, Lv X, Xie H, Guo Z, Wang J, Dou G, Zhang C, Sun M: Computational study of effective matrix metalloproteinase 9 (MMP9) targeting natural inhibitors. Aging (Albany NY). 2021 Oct 4;13(19):22867-22882. doi: 10.18632/aging.203581. Epub 2021 Oct 4. [PubMed:34607974 ]
- Zhong L, Ravichandran V, Zhang N, Wang H, Bian X, Zhang Y, Li A: Attenuation of Pseudomonas aeruginosa Quorum Sensing by Natural Products: Virtual Screening, Evaluation and Biomolecular Interactions. Int J Mol Sci. 2020 Mar 22;21(6). pii: ijms21062190. doi: 10.3390/ijms21062190. [PubMed:32235775 ]
- Uddin GM, Kim CY, Chung D, Kim KA, Jung SH: One-step isolation of sappanol and brazilin from Caesalpinia sappan and their effects on oxidative stress-induced retinal death. BMB Rep. 2015 May;48(5):289-94. doi: 10.5483/bmbrep.2015.48.5.189. [PubMed:25248564 ]
|
|---|