| Record Information |
|---|
| Version | 2.0 |
|---|
| Created at | 2022-06-29 20:48:06 UTC |
|---|
| Updated at | 2022-06-29 20:48:06 UTC |
|---|
| NP-MRD ID | NP0140145 |
|---|
| Secondary Accession Numbers | None |
|---|
| Natural Product Identification |
|---|
| Common Name | Parishin E |
|---|
| Description | PARISHIN E belongs to the class of organic compounds known as phenolic glycosides. These are organic compounds containing a phenolic structure attached to a glycosyl moiety. Some examples of phenolic structures include lignans, and flavonoids. Among the sugar units found in natural glycosides are D-glucose, L-Fructose, and L rhamnose. Parishin E is found in Gastrodia elata. Parishin E was first documented in 2019 (PMID: 30999716). Based on a literature review a small amount of articles have been published on PARISHIN E (PMID: 33350264) (PMID: 32495458) (PMID: 30720740) (PMID: 30717352). |
|---|
| Structure | OC[C@H]1O[C@@H](OC2=CC=C(COC(=O)CC(O)(CC(O)=O)C(O)=O)C=C2)[C@H](O)[C@@H](O)[C@@H]1O InChI=1S/C19H24O13/c20-7-11-14(24)15(25)16(26)17(32-11)31-10-3-1-9(2-4-10)8-30-13(23)6-19(29,18(27)28)5-12(21)22/h1-4,11,14-17,20,24-26,29H,5-8H2,(H,21,22)(H,27,28)/t11-,14-,15+,16-,17-,19?/m1/s1 |
|---|
| Synonyms | Not Available |
|---|
| Chemical Formula | C19H24O13 |
|---|
| Average Mass | 460.3880 Da |
|---|
| Monoisotopic Mass | 460.12169 Da |
|---|
| IUPAC Name | Not Available |
|---|
| Traditional Name | Not Available |
|---|
| CAS Registry Number | Not Available |
|---|
| SMILES | OC[C@H]1O[C@@H](OC2=CC=C(COC(=O)CC(O)(CC(O)=O)C(O)=O)C=C2)[C@H](O)[C@@H](O)[C@@H]1O |
|---|
| InChI Identifier | InChI=1S/C19H24O13/c20-7-11-14(24)15(25)16(26)17(32-11)31-10-3-1-9(2-4-10)8-30-13(23)6-19(29,18(27)28)5-12(21)22/h1-4,11,14-17,20,24-26,29H,5-8H2,(H,21,22)(H,27,28)/t11-,14-,15+,16-,17-,19?/m1/s1 |
|---|
| InChI Key | XAIUTKHLNZBMEG-HUNOYVTQSA-N |
|---|
| Experimental Spectra |
|---|
|
| Not Available | | Predicted Spectra |
|---|
|
| | Spectrum Type | Description | Depositor ID | Depositor Organization | Depositor | Deposition Date | View |
|---|
| 1D NMR | 13C NMR Spectrum (1D, 25 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 100 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 252 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 1000 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 50 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 200 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 75 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 300 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 101 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 400 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 126 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 500 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 151 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 600 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 176 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 700 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 201 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 800 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 226 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 900 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum |
| | Chemical Shift Submissions |
|---|
|
| Not Available | | Species |
|---|
| Species of Origin | |
|---|
| Chemical Taxonomy |
|---|
| Description | Belongs to the class of organic compounds known as phenolic glycosides. These are organic compounds containing a phenolic structure attached to a glycosyl moiety. Some examples of phenolic structures include lignans, and flavonoids. Among the sugar units found in natural glycosides are D-glucose, L-Fructose, and L rhamnose. |
|---|
| Kingdom | Organic compounds |
|---|
| Super Class | Organic oxygen compounds |
|---|
| Class | Organooxygen compounds |
|---|
| Sub Class | Carbohydrates and carbohydrate conjugates |
|---|
| Direct Parent | Phenolic glycosides |
|---|
| Alternative Parents | |
|---|
| Substituents | - Phenolic glycoside
- Hexose monosaccharide
- O-glycosyl compound
- Benzyloxycarbonyl
- Tricarboxylic acid or derivatives
- Phenoxy compound
- Phenol ether
- Fatty acid ester
- Alpha-hydroxy acid
- Monocyclic benzene moiety
- Hydroxy acid
- Monosaccharide
- Fatty acyl
- Oxane
- Benzenoid
- Tertiary alcohol
- Carboxylic acid ester
- Secondary alcohol
- Acetal
- Oxacycle
- Carboxylic acid
- Carboxylic acid derivative
- Organoheterocyclic compound
- Polyol
- Alcohol
- Hydrocarbon derivative
- Organic oxide
- Primary alcohol
- Carbonyl group
- Aromatic heteromonocyclic compound
|
|---|
| Molecular Framework | Aromatic heteromonocyclic compounds |
|---|
| External Descriptors | Not Available |
|---|
| Physical Properties |
|---|
| State | Not Available |
|---|
| Experimental Properties | | Property | Value | Reference |
|---|
| Melting Point | Not Available | Not Available | | Boiling Point | Not Available | Not Available | | Water Solubility | Not Available | Not Available | | LogP | Not Available | Not Available |
|
|---|
| Predicted Properties | |
|---|
| General References | - Jun-Chao DU, Xiang-Lan PU, Kai-Lei F, Yan-Juan Z, Yu-Jing Z, Xie-He W, Sheng-Jun C, Song LI, Yun-Tian Z, Ke-Ji C, Jun P, Yun-Ming XU: [Quality evaluation of Gastrodiae Rhizoma standard decoction based on UPLC fingerprint and quantitative analysis multi-components method]. Zhongguo Zhong Yao Za Zhi. 2020 Oct;45(20):4909-4917. doi: 10.19540/j.cnki.cjcmm.20200622.303. [PubMed:33350264 ]
- Liu M, Zhao L, Han L, Li H, Shi Y, Cui J, Wang C, Xu L, Zhong L: Discovery and identification of proangiogenic chemical markers from Gastrodiae Rhizoma based on zebrafish model and metabolomics approach. Phytochem Anal. 2020 Nov;31(6):835-845. doi: 10.1002/pca.2949. Epub 2020 Jun 3. [PubMed:32495458 ]
- Li Y, Zhang Y, Zhang Z, Hu Y, Cui X, Xiong Y: Quality Evaluation of Gastrodia Elata Tubers Based on HPLC Fingerprint Analyses and Quantitative Analysis of Multi-Components by Single Marker. Molecules. 2019 Apr 17;24(8):1521. doi: 10.3390/molecules24081521. [PubMed:30999716 ]
- Kim DW, Lee WJ, Asmelash Gebru Y, Choi HS, Yeo SH, Jeong YJ, Kim S, Kim YH, Kim MK: Comparison of Bioactive Compounds and Antioxidant Activities of Maclura tricuspidata Fruit Extracts at Different Maturity Stages. Molecules. 2019 Feb 4;24(3):567. doi: 10.3390/molecules24030567. [PubMed:30720740 ]
- Hu M, Yan H, Fu Y, Jiang Y, Yao W, Yu S, Zhang L, Wu Q, Ding A, Shan M: Optimal Extraction Study of Gastrodin-Type Components from Gastrodia Elata Tubers by Response Surface Design with Integrated Phytochemical and Bioactivity Evaluation. Molecules. 2019 Feb 2;24(3):547. doi: 10.3390/molecules24030547. [PubMed:30717352 ]
|
|---|