| Record Information |
|---|
| Version | 2.0 |
|---|
| Created at | 2022-06-29 19:59:32 UTC |
|---|
| Updated at | 2022-06-29 19:59:32 UTC |
|---|
| NP-MRD ID | NP0139549 |
|---|
| Secondary Accession Numbers | None |
|---|
| Natural Product Identification |
|---|
| Common Name | (+)-Glaucarubinone |
|---|
| Description | Glaucarubinone belongs to the class of organic compounds known as quassinoids. These are a group of compounds chemically degraded from triterpenes. According to their basic skeleton, quassinoids are categorized into five distinct groups, C-18, C-19, C-20, C-22 and C-25 types. The C-20 quassinoids can be further classified into two types, tetracyclic and the pentacyclic. The tetracyclic variety does not have oxygenation at C-20, while the pentacyclic quassinoids possess additional oxygenation at C-20 that allows for the formation of an additional ring. (+)-Glaucarubinone is found in Ailanthus altissima, Ailanthus excelsa, Hannoa undulata, Perriera madagascariensis, Simarouba amara and Simarouba versicolor. (+)-Glaucarubinone was first documented in 1984 (PMID: 17340307). Based on a literature review a small amount of articles have been published on glaucarubinone (PMID: 12560029) (PMID: 19199792) (PMID: 19501276) (PMID: 21264793). |
|---|
| Structure | CC[C@](C)(O)C(=O)O[C@@H]1[C@H]2[C@@H](C)[C@@H](O)[C@]3(O)OC[C@@]22[C@H]3[C@@]3(C)[C@H](O)C(=O)C=C(C)[C@@H]3C[C@H]2OC1=O InChI=1S/C25H34O10/c1-6-22(4,31)21(30)35-16-15-11(3)17(27)25(32)20-23(5)12(10(2)7-13(26)18(23)28)8-14(34-19(16)29)24(15,20)9-33-25/h7,11-12,14-18,20,27-28,31-32H,6,8-9H2,1-5H3/t11-,12+,14-,15-,16-,17-,18-,20-,22+,23-,24+,25+/m1/s1 |
|---|
| Synonyms | | Value | Source |
|---|
| (+)-Glaucarubinone | ChEBI |
|
|---|
| Chemical Formula | C25H34O10 |
|---|
| Average Mass | 494.5370 Da |
|---|
| Monoisotopic Mass | 494.21520 Da |
|---|
| IUPAC Name | Not Available |
|---|
| Traditional Name | Not Available |
|---|
| CAS Registry Number | Not Available |
|---|
| SMILES | CC[C@](C)(O)C(=O)O[C@@H]1[C@H]2[C@@H](C)[C@@H](O)[C@]3(O)OC[C@@]22[C@H]3[C@@]3(C)[C@H](O)C(=O)C=C(C)[C@@H]3C[C@H]2OC1=O |
|---|
| InChI Identifier | InChI=1S/C25H34O10/c1-6-22(4,31)21(30)35-16-15-11(3)17(27)25(32)20-23(5)12(10(2)7-13(26)18(23)28)8-14(34-19(16)29)24(15,20)9-33-25/h7,11-12,14-18,20,27-28,31-32H,6,8-9H2,1-5H3/t11-,12+,14-,15-,16-,17-,18-,20-,22+,23-,24+,25+/m1/s1 |
|---|
| InChI Key | WRBGCYVAJRRQKP-STDAJNJZSA-N |
|---|
| Experimental Spectra |
|---|
|
| Not Available | | Predicted Spectra |
|---|
|
| | Spectrum Type | Description | Depositor ID | Depositor Organization | Depositor | Deposition Date | View |
|---|
| 1D NMR | 13C NMR Spectrum (1D, 25 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 100 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 252 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 1000 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 50 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 200 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 75 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 300 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 101 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 400 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 126 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 500 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 151 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 600 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 176 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 700 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 201 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 800 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 226 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 900 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum |
| | Chemical Shift Submissions |
|---|
|
| Not Available | | Species |
|---|
| Species of Origin | |
|---|
| Chemical Taxonomy |
|---|
| Description | Belongs to the class of organic compounds known as quassinoids. These are a group of compounds chemically degraded from triterpenes. According to their basic skeleton, quassinoids are categorized into five distinct groups, C-18, C-19, C-20, C-22 and C-25 types. The C-20 quassinoids can be further classified into two types, tetracyclic and the pentacyclic. The tetracyclic variety does not have oxygenation at C-20, while the pentacyclic quassinoids possess additional oxygenation at C-20 that allows for the formation of an additional ring. |
|---|
| Kingdom | Organic compounds |
|---|
| Super Class | Lipids and lipid-like molecules |
|---|
| Class | Prenol lipids |
|---|
| Sub Class | Terpene lactones |
|---|
| Direct Parent | Quassinoids |
|---|
| Alternative Parents | |
|---|
| Substituents | - Triterpenoid
- Polycyclic triterpenoid
- C-20 quassinoid skeleton
- Quassinoid
- Naphthopyran
- Naphthalene
- Delta valerolactone
- Fatty acid ester
- Delta_valerolactone
- Oxepane
- Cyclohexenone
- Pyran
- Fatty acyl
- Oxane
- Dicarboxylic acid or derivatives
- Tertiary alcohol
- Tetrahydrofuran
- Cyclic alcohol
- Secondary alcohol
- Cyclic ketone
- Carboxylic acid ester
- Hemiacetal
- Lactone
- Ketone
- Organoheterocyclic compound
- Polyol
- Oxacycle
- Carboxylic acid derivative
- Alcohol
- Organooxygen compound
- Hydrocarbon derivative
- Organic oxide
- Organic oxygen compound
- Carbonyl group
- Aliphatic heteropolycyclic compound
|
|---|
| Molecular Framework | Aliphatic heteropolycyclic compounds |
|---|
| External Descriptors | |
|---|
| Physical Properties |
|---|
| State | Not Available |
|---|
| Experimental Properties | | Property | Value | Reference |
|---|
| Melting Point | Not Available | Not Available | | Boiling Point | Not Available | Not Available | | Water Solubility | Not Available | Not Available | | LogP | Not Available | Not Available |
|
|---|
| Predicted Properties | |
|---|
| General References | - Joshi BC, Pandey A, Sharma RP, Khare A: Quassinoids from Ailanthus excelsa. Phytochemistry. 2003 Feb;62(4):579-84. doi: 10.1016/s0031-9422(02)00493-4. [PubMed:12560029 ]
- Waterman PG, Ampofo SA: Cytotoxic Quassinoids from Odyendyea gabonensis Stem Bark: Isolation and High-Field NMR. Planta Med. 1984 Jun;50(3):261-3. doi: 10.1055/s-2007-969694. [PubMed:17340307 ]
- Beutler JA, Kang MI, Robert F, Clement JA, Pelletier J, Colburn NH, McKee TC, Goncharova E, McMahon JB, Henrich CJ: Quassinoid inhibition of AP-1 function does not correlate with cytotoxicity or protein synthesis inhibition. J Nat Prod. 2009 Mar 27;72(3):503-6. doi: 10.1021/np800732n. [PubMed:19199792 ]
- de Mesquita ML, de Paula JE, Pessoa C, de Moraes MO, Costa-Lotufo LV, Grougnet R, Michel S, Tillequin F, Espindola LS: Cytotoxic activity of Brazilian Cerrado plants used in traditional medicine against cancer cell lines. J Ethnopharmacol. 2009 Jun 25;123(3):439-45. doi: 10.1016/j.jep.2009.03.018. Epub 2009 Mar 26. [PubMed:19501276 ]
- Zarse K, Bossecker A, Muller-Kuhrt L, Siems K, Hernandez MA, Berendsohn WG, Birringer M, Ristow M: The phytochemical glaucarubinone promotes mitochondrial metabolism, reduces body fat, and extends lifespan of Caenorhabditis elegans. Horm Metab Res. 2011 Apr;43(4):241-3. doi: 10.1055/s-0030-1270524. Epub 2011 Jan 24. [PubMed:21264793 ]
|
|---|