Np mrd loader

Record Information
Version2.0
Created at2022-06-29 19:50:33 UTC
Updated at2022-06-29 19:50:33 UTC
NP-MRD IDNP0139351
Secondary Accession NumbersNone
Natural Product Identification
Common Name3-Acetyldeoxy Nivalenol
Description3-Acetyldeoxynivalenol, also known as 15-ADON or 3-acetyl DON, belongs to the class of organic compounds known as trichothecenes. These are sesquiterpene mycotoxins structurally characterized by the presence of an epoxide ring and a benzopyran derivative with a variant number of hydroxyl, acetyl, or other substituents. The most important structural features causing the biological activities of trichothecenes are the 12,13-epoxy ring, the presence of hydroxyl or acetyl groups at appropriate positions on the trichothecene nucleus and the structure and position of the side-chain. 3-Acetyldeoxy Nivalenol is found in Fusarium culmorum and Fusarium graminearum. 3-Acetyldeoxy Nivalenol was first documented in 2001 (PMID: 11510664). Based on a literature review a significant number of articles have been published on 3-acetyldeoxynivalenol (PMID: 34199242) (PMID: 35448850) (PMID: 35051496) (PMID: 35001349) (PMID: 34666620) (PMID: 34597541).
Structure
Thumb
Synonyms
ValueSource
(3alpha,7alpha)-3-(Acetyloxy)-12,13-epoxy-7,15-dihydroxytrichothec-9-en-8-oneChEBI
15-ADONChEBI
3-(Acetyloxy)-12,13-epoxy-7alpha,15alpha-dihydroxytrichothec-9-en-8-oneChEBI
3-Acetyl DONChEBI
3-Acetyl-deoxynivalenolChEBI
3-Acetyl-DONChEBI
(3a,7a)-3-(Acetyloxy)-12,13-epoxy-7,15-dihydroxytrichothec-9-en-8-oneGenerator
(3Α,7α)-3-(acetyloxy)-12,13-epoxy-7,15-dihydroxytrichothec-9-en-8-oneGenerator
3-(Acetyloxy)-12,13-epoxy-7a,15a-dihydroxytrichothec-9-en-8-oneGenerator
3-(Acetyloxy)-12,13-epoxy-7α,15α-dihydroxytrichothec-9-en-8-oneGenerator
3-ADONMeSH
AcetylDONMeSH
Chemical FormulaC17H22O7
Average Mass338.3560 Da
Monoisotopic Mass338.13655 Da
IUPAC Name(1'R,2S,2'R,3'S,7'R,9'R,10'R)-3'-hydroxy-2'-(hydroxymethyl)-1',5'-dimethyl-4'-oxo-8'-oxaspiro[oxirane-2,12'-tricyclo[7.2.1.0^{2,7}]dodecan]-5'-en-10'-yl acetate
Traditional Name(1'R,2S,2'R,3'S,7'R,9'R,10'R)-3'-hydroxy-2'-(hydroxymethyl)-1',5'-dimethyl-4'-oxo-8'-oxaspiro[oxirane-2,12'-tricyclo[7.2.1.0^{2,7}]dodecan]-5'-en-10'-yl acetate
CAS Registry NumberNot Available
SMILES
[H][C@@]12O[C@]3([H])C=C(C)C(=O)[C@@H](O)[C@]3(CO)[C@@](C)(C[C@H]1OC(C)=O)[C@]21CO1
InChI Identifier
InChI=1S/C17H22O7/c1-8-4-11-16(6-18,13(21)12(8)20)15(3)5-10(23-9(2)19)14(24-11)17(15)7-22-17/h4,10-11,13-14,18,21H,5-7H2,1-3H3/t10-,11-,13-,14-,15-,16-,17+/m1/s1
InChI KeyADFIQZBYNGPCGY-HTJQZXIKSA-N
Experimental Spectra
Not Available
Predicted Spectra
Spectrum TypeDescriptionDepositor IDDepositor OrganizationDepositorDeposition DateView
1D NMR13C NMR Spectrum (1D, 25 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 100 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 252 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 1000 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 50 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 200 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 75 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 300 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 101 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 400 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 126 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 500 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 151 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 600 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 176 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 700 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 201 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 800 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 226 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 900 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
Chemical Shift Submissions
Not Available
Species
Species of Origin
Species NameSourceReference
Fusarium culmorumLOTUS Database
Fusarium graminearumLOTUS Database
Chemical Taxonomy
Description Belongs to the class of organic compounds known as trichothecenes. These are sesquiterpene mycotoxins structurally characterized by the presence of an epoxide ring and a benzopyran derivative with a variant number of hydroxyl, acetyl, or other substituents. The most important structural features causing the biological activities of trichothecenes are the 12,13-epoxy ring, the presence of hydroxyl or acetyl groups at appropriate positions on the trichothecene nucleus and the structure and position of the side-chain.
KingdomOrganic compounds
Super ClassLipids and lipid-like molecules
ClassPrenol lipids
Sub ClassSesquiterpenoids
Direct ParentTrichothecenes
Alternative Parents
Substituents
  • Trichothecene skeleton
  • Oxepane
  • Cyclohexenone
  • Oxane
  • Carboxylic acid ester
  • Ketone
  • Secondary alcohol
  • Cyclic ketone
  • Monocarboxylic acid or derivatives
  • Ether
  • Oxirane
  • Dialkyl ether
  • Carboxylic acid derivative
  • Organoheterocyclic compound
  • Oxacycle
  • Carbonyl group
  • Primary alcohol
  • Organic oxide
  • Organic oxygen compound
  • Organooxygen compound
  • Alcohol
  • Hydrocarbon derivative
  • Aliphatic heteropolycyclic compound
Molecular FrameworkAliphatic heteropolycyclic compounds
External DescriptorsNot Available
Physical Properties
StateNot Available
Experimental Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Predicted Properties
PropertyValueSource
logP-0.61ALOGPS
logP-0.53ChemAxon
logS-1.8ALOGPS
pKa (Strongest Acidic)12.75ChemAxon
pKa (Strongest Basic)-2.8ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count6ChemAxon
Hydrogen Donor Count2ChemAxon
Polar Surface Area105.59 ŲChemAxon
Rotatable Bond Count3ChemAxon
Refractivity80.77 m³·mol⁻¹ChemAxon
Polarizability33.53 ųChemAxon
Number of Rings4ChemAxon
BioavailabilityYesChemAxon
Rule of FiveYesChemAxon
Ghose FilterNoChemAxon
Veber's RuleNoChemAxon
MDDR-like RuleNoChemAxon
HMDB IDNot Available
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FoodDB IDNot Available
KNApSAcK IDNot Available
Chemspider ID4572447
KEGG Compound IDNot Available
BioCyc IDCPD-18419
BiGG IDNot Available
Wikipedia LinkNot Available
METLIN IDNot Available
PubChem Compound5458510
PDB IDNot Available
ChEBI ID146195
Good Scents IDrw1680881
References
General References
  1. Tarazona A, Gomez JV, Mateo F, Jimenez M, Mateo EM: Potential Health Risk Associated with Mycotoxins in Oat Grains Consumed in Spain. Toxins (Basel). 2021 Jun 13;13(6). pii: toxins13060421. doi: 10.3390/toxins13060421. [PubMed:34199242 ]
  2. Zhang D, Zhao L, Chen Y, Gao H, Hua Y, Yuan X, Yang H: Mycotoxins in Maize Silage from China in 2019. Toxins (Basel). 2022 Mar 27;14(4). pii: toxins14040241. doi: 10.3390/toxins14040241. [PubMed:35448850 ]
  3. Hu Y, Li H, Min J, Yu Y, Liu W, Huang JW, Zhang L, Yang Y, Dai L, Chen CC, Guo RT: Crystal structure and biochemical analysis of the specialized deoxynivalenol-detoxifying glyoxalase SPG from Gossypium hirsutum. Int J Biol Macromol. 2022 Mar 1;200:388-396. doi: 10.1016/j.ijbiomac.2022.01.055. Epub 2022 Jan 18. [PubMed:35051496 ]
  4. de Arruda MHM, Schwab EDP, Zchonski FL, da Cruz JF, Tessmann DJ, Da-Silva PR: Production of type-B trichothecenes by Fusarium meridionale, F. graminearum, and F. austroamericanum in wheat plants and rice medium. Mycotoxin Res. 2022 Feb;38(1):1-11. doi: 10.1007/s12550-021-00445-9. Epub 2022 Jan 10. [PubMed:35001349 ]
  5. Liang J, Ning M, Guan S, Fang L, Chen X, Dong Z, Fan L: Risk assessment of multiple-mycotoxin exposure for consumers of chestnuts in Shandong Province markets in China. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2021 Dec;38(12):2137-2150. doi: 10.1080/19440049.2021.1970240. Epub 2021 Oct 19. [PubMed:34666620 ]
  6. Goessens T, De Baere S, Deknock A, De Troyer N, Van Leeuwenberg R, Martel A, Pasmans F, Goethals P, Lens L, Spanoghe P, Vanhaecke L, Croubels S: Agricultural contaminants in amphibian breeding ponds: Occurrence, risk and correlation with agricultural land use. Sci Total Environ. 2022 Feb 1;806(Pt 2):150661. doi: 10.1016/j.scitotenv.2021.150661. Epub 2021 Sep 29. [PubMed:34597541 ]
  7. Arce-Lopez B, Alvarez-Erviti L, De Santis B, Izco M, Lopez-Calvo S, Marzo-Sola ME, Debegnach F, Lizarraga E, Lopez de Cerain A, Gonzalez-Penas E, Vettorazzi A: Biomonitoring of Mycotoxins in Plasma of Patients with Alzheimer's and Parkinson's Disease. Toxins (Basel). 2021 Jul 10;13(7):477. doi: 10.3390/toxins13070477. [PubMed:34357949 ]
  8. Alonso-Jauregui M, Gonzalez-Penas E, Lopez de Cerain A, Vettorazzi A: Genotoxicity of 12 Mycotoxins by the SOS/umu Test: Comparison of Liver and Kidney S9 Fraction. Toxins (Basel). 2022 Jun 10;14(6):400. doi: 10.3390/toxins14060400. [PubMed:35737061 ]
  9. Kudupoje MB, Malathi V, Yiannikouris A: Impact of a Natural Fusarial Multi-Mycotoxin Challenge on Broiler Chickens and Mitigation Properties Provided by a Yeast Cell Wall Extract and a Postbiotic Yeast Cell Wall-Based Blend. Toxins (Basel). 2022 Apr 28;14(5):315. doi: 10.3390/toxins14050315. [PubMed:35622561 ]
  10. Jia H, Zhang T, Liu N, Si X, Bai J, Yang Y, Chen Z, Wu Z: 4-Phenylbutyric acid alleviates 3-acetyldeoxynivalenol-induced immune cells response by inhibiting endoplasmic reticulum stress in mouse spleen. Food Chem Toxicol. 2022 Jun;164:113002. doi: 10.1016/j.fct.2022.113002. Epub 2022 Apr 9. [PubMed:35413383 ]
  11. Tretiakova P, Voegele RT, Soloviev A, Link TI: Successful Silencing of the Mycotoxin Synthesis Gene TRI5 in Fusarium culmorum and Observation of Reduced Virulence in VIGS and SIGS Experiments. Genes (Basel). 2022 Feb 23;13(3):395. doi: 10.3390/genes13030395. [PubMed:35327949 ]
  12. Pack ED, Weiland S, Musser R, Schmale DG: Survey of zearalenone and type-B trichothecene mycotoxins in swine feed in the USA. Mycotoxin Res. 2021 Nov;37(4):297-313. doi: 10.1007/s12550-021-00442-y. Epub 2021 Sep 18. [PubMed:34537950 ]
  13. Wang SS, Cui H, Chen MZ, Li L, Wu Y, Wang SX: Simultaneous quantitation of 3ADON and 15ADON chemotypes of DON-producing Fusarium species in Chinese wheat based on duplex droplet digital PCR assay. J Microbiol Methods. 2021 Nov;190:106319. doi: 10.1016/j.mimet.2021.106319. Epub 2021 Sep 2. [PubMed:34480973 ]
  14. Jorquera-Pereira D, Pavon-Perez J, Rios-Gajardo G: Identification of type B trichothecenes and zearalenone in Chilean cereals by planar chromatography coupled to mass spectroscopy. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2021 Oct;38(10):1778-1787. doi: 10.1080/19440049.2021.1948618. Epub 2021 Jul 13. [PubMed:34254899 ]
  15. Zhu T, Li L, Petridis A, Xydis G, Ren M: First Report of Fusarium asiaticum Causing Stem Rot of Ligusticum chuanxiong in China. Plant Dis. 2021 Jul 2. doi: 10.1094/PDIS-05-21-1026-PDN. [PubMed:34213965 ]
  16. Jia H, Liu N, Zhang Y, Wang C, Yang Y, Wu Z: 3-Acetyldeoxynivalenol induces cell death through endoplasmic reticulum stress in mouse liver. Environ Pollut. 2021 Oct 1;286:117238. doi: 10.1016/j.envpol.2021.117238. Epub 2021 Apr 27. [PubMed:33984781 ]
  17. Xu F, Liu W, Song Y, Zhou Y, Xu X, Yang G, Wang J, Zhang J, Liu L: The Distribution of Fusarium graminearum and Fusarium asiaticum Causing Fusarium Head Blight of Wheat in Relation to Climate and Cropping System. Plant Dis. 2021 Oct;105(10):2830-2835. doi: 10.1094/PDIS-01-21-0013-RE. Epub 2021 Nov 1. [PubMed:33881919 ]
  18. Dong F, Li Y, Chen X, Wu J, Wang S, Zhang X, Ma G, Lee YW, Mokoena MP, Olaniran AO, Xu JH, Shi JR: Analysis of the Fusarium graminearum Species Complex from Gramineous Weeds Near Wheat Fields in Jiangsu Province, China. Plant Dis. 2021 Oct;105(10):3269-3275. doi: 10.1094/PDIS-11-20-2376-RE. Epub 2021 Nov 9. [PubMed:33847508 ]
  19. Niknejad F, Escriva L, Adel Rad KB, Khoshnia M, Barba FJ, Berrada H: Biomonitoring of Multiple Mycotoxins in Urine by GC-MS/MS: A Pilot Study on Patients with Esophageal Cancer in Golestan Province, Northeastern Iran. Toxins (Basel). 2021 Mar 29;13(4):243. doi: 10.3390/toxins13040243. [PubMed:33805401 ]
  20. Arce-Lopez B, Lizarraga E, Lopez de Mesa R, Gonzalez-Penas E: Assessment of Exposure to Mycotoxins in Spanish Children through the Analysis of Their Levels in Plasma Samples. Toxins (Basel). 2021 Feb 15;13(2):150. doi: 10.3390/toxins13020150. [PubMed:33672088 ]
  21. Abramson D, Clear RM, Gaba D, Smith DM, Patrick SK, Saydak D: Trichothecene and moniliformin production by Fusarium species from western Canadian wheat. J Food Prot. 2001 Aug;64(8):1220-5. doi: 10.4315/0362-028x-64.8.1220. [PubMed:11510664 ]
  22. Eriksen GS, Pettersson H, Lindberg JE: Absorption, metabolism and excretion of 3-acetyl DON in pigs. Arch Tierernahr. 2003 Oct;57(5):335-45. doi: 10.1080/00039420310001607699. [PubMed:14620907 ]
  23. Bretz M, Beyer M, Cramer B, Humpf HU: Stable isotope dilution analysis of the Fusarium mycotoxins deoxynivalenol and 3-acetyldeoxynivalenol. Mol Nutr Food Res. 2006 Mar;50(3):251-60. doi: 10.1002/mnfr.200500230. [PubMed:16521158 ]
  24. Vujanovic V, Goh YK: Sphaerodes mycoparasitica biotrophic mycoparasite of 3-acetyldeoxynivalenol- and 15-acetyldeoxynivalenol-producing toxigenic Fusarium graminearum chemotypes. FEMS Microbiol Lett. 2011 Mar;316(2):136-43. doi: 10.1111/j.1574-6968.2010.02201.x. Epub 2011 Jan 19. [PubMed:21204935 ]
  25. Amarasinghe C, Wang JH, Liao YC, Fernando WG: Difference in TRI13 gene sequences between the 3-acetyldeoxynivalenol producing Fusarium graminearum chemotypes from Canada and China. Int J Mol Sci. 2011;12(9):6164-75. doi: 10.3390/ijms12096164. Epub 2011 Sep 20. [PubMed:22016651 ]