Np mrd loader

Record Information
Version2.0
Created at2022-06-29 19:45:40 UTC
Updated at2022-06-29 19:45:41 UTC
NP-MRD IDNP0139243
Secondary Accession NumbersNone
Natural Product Identification
Common NameUndulatoside A
DescriptionUndulatoside A belongs to the class of organic compounds known as phenolic glycosides. These are organic compounds containing a phenolic structure attached to a glycosyl moiety. Some examples of phenolic structures include lignans, and flavonoids. Among the sugar units found in natural glycosides are D-glucose, L-Fructose, and L rhamnose. Undulatoside A is found in Camellia sinensis, Helichrysum arenarium and Sinoadina racemosa. Undulatoside A was first documented in 2006 (PMID: 17135054). Based on a literature review a significant number of articles have been published on Undulatoside A (PMID: 20708173) (PMID: 22932311) (PMID: 34738433) (PMID: 35807260) (PMID: 32364737) (PMID: 28882671).
Structure
Thumb
SynonymsNot Available
Chemical FormulaC16H18O9
Average Mass354.3110 Da
Monoisotopic Mass354.09508 Da
IUPAC NameNot Available
Traditional NameNot Available
CAS Registry NumberNot Available
SMILES
CC1=CC(=O)C2=C(O)C=C(O[C@@H]3O[C@H](CO)[C@@H](O)[C@H](O)[C@H]3O)C=C2O1
InChI Identifier
InChI=1S/C16H18O9/c1-6-2-8(18)12-9(19)3-7(4-10(12)23-6)24-16-15(22)14(21)13(20)11(5-17)25-16/h2-4,11,13-17,19-22H,5H2,1H3/t11-,13-,14+,15-,16-/m1/s1
InChI KeyBYYDEEAJCDGLER-YMILTQATSA-N
Experimental Spectra
Not Available
Predicted Spectra
Spectrum TypeDescriptionDepositor IDDepositor OrganizationDepositorDeposition DateView
1D NMR13C NMR Spectrum (1D, 25 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 100 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 252 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 1000 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 50 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 200 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 75 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 300 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 101 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 400 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 126 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 500 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 151 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 600 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 176 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 700 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 201 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 800 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 226 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 900 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
Chemical Shift Submissions
Not Available
Species
Species of Origin
Species NameSourceReference
Camellia sinensisLOTUS Database
Helichrysum arenariumLOTUS Database
Sinoadina racemosaLOTUS Database
Chemical Taxonomy
Description Belongs to the class of organic compounds known as phenolic glycosides. These are organic compounds containing a phenolic structure attached to a glycosyl moiety. Some examples of phenolic structures include lignans, and flavonoids. Among the sugar units found in natural glycosides are D-glucose, L-Fructose, and L rhamnose.
KingdomOrganic compounds
Super ClassOrganic oxygen compounds
ClassOrganooxygen compounds
Sub ClassCarbohydrates and carbohydrate conjugates
Direct ParentPhenolic glycosides
Alternative Parents
Substituents
  • Phenolic glycoside
  • Hexose monosaccharide
  • Chromone
  • O-glycosyl compound
  • Benzopyran
  • 1-benzopyran
  • 1-hydroxy-4-unsubstituted benzenoid
  • 1-hydroxy-2-unsubstituted benzenoid
  • Pyranone
  • Monosaccharide
  • Oxane
  • Pyran
  • Benzenoid
  • Heteroaromatic compound
  • Vinylogous acid
  • Secondary alcohol
  • Organoheterocyclic compound
  • Polyol
  • Oxacycle
  • Acetal
  • Primary alcohol
  • Alcohol
  • Hydrocarbon derivative
  • Organic oxide
  • Aromatic heteropolycyclic compound
Molecular FrameworkAromatic heteropolycyclic compounds
External DescriptorsNot Available
Physical Properties
StateNot Available
Experimental Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Predicted Properties
PropertyValueSource
HMDB IDNot Available
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FoodDB IDNot Available
KNApSAcK IDNot Available
Chemspider ID4479215
KEGG Compound IDNot Available
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkNot Available
METLIN IDNot Available
PubChem Compound5321494
PDB IDNot Available
ChEBI IDNot Available
Good Scents IDNot Available
References
General References
  1. Hakki Z, Cao B, Heskes AM, Goodger JQ, Woodrow IE, Williams SJ: Synthesis of the monoterpenoid esters cypellocarpin C and cuniloside B and evidence for their widespread occurrence in Eucalyptus. Carbohydr Res. 2010 Sep 23;345(14):2079-84. doi: 10.1016/j.carres.2010.07.029. Epub 2010 Jul 21. [PubMed:20708173 ]
  2. Kim SB, Ahn JH, Han SB, Hwang BY, Kim SY, Lee MK: Anti-adipogenic chromone glycosides from Cnidium monnieri fruits in 3T3-L1 cells. Bioorg Med Chem Lett. 2012 Oct 1;22(19):6267-71. doi: 10.1016/j.bmcl.2012.07.103. Epub 2012 Aug 8. [PubMed:22932311 ]
  3. Duan ZW, Zhang J, Chen XJ, Pang X, Ma BP: [Non-alkaloid constituents of Hymenocallis littoralis]. Zhongguo Zhong Yao Za Zhi. 2021 Oct;46(20):5304-5309. doi: 10.19540/j.cnki.cjcmm.20210610.320. [PubMed:34738433 ]
  4. Rahayu I, Timotius KH: Phytochemical Analysis, Antimutagenic and Antiviral Activity of Moringa oleifera L. Leaf Infusion: In Vitro and In Silico Studies. Molecules. 2022 Jun 22;27(13):4017. doi: 10.3390/molecules27134017. [PubMed:35807260 ]
  5. Pereira LCO, Abreu LS, Silva JPRE, Machado FSVL, Queiroga CS, do Espi Rito-Santo RF, Agnelo-Silva DF, Villarreal CF, Agra MF, Scotti MT, Costa VCO, Tavares JF, Silva MSD: Bioactive Compounds from the Aerial Parts of Evolvulus linarioides. J Nat Prod. 2020 May 22;83(5):1515-1523. doi: 10.1021/acs.jnatprod.9b01189. Epub 2020 May 4. [PubMed:32364737 ]
  6. Yu J, Song X, Wang D, Wang X, Wang X: Five new chromone glycosides from Scindapsus officinalis (Roxb.) Schott. Fitoterapia. 2017 Oct;122:101-106. doi: 10.1016/j.fitote.2017.09.002. Epub 2017 Sep 4. [PubMed:28882671 ]
  7. Peng B, Bai RF, Li P, Han XY, Wang H, Zhu CC, Zeng ZP, Chai XY: Two new glycosides from Dryopteris fragrans with anti-inflammatory activities. J Asian Nat Prod Res. 2016;18(1):59-64. doi: 10.1080/10286020.2015.1121853. Epub 2015 Dec 24. [PubMed:26700189 ]
  8. Wang YB, Huang R, Zhang HB, Li L: Chromone glycosides from Knoxia corymbosa. J Asian Nat Prod Res. 2006 Oct-Nov;8(7):663-70. doi: 10.1080/10286020500246303. [PubMed:17135054 ]