Np mrd loader

Record Information
Version2.0
Created at2022-06-29 19:45:23 UTC
Updated at2022-06-29 19:45:23 UTC
NP-MRD IDNP0139238
Secondary Accession NumbersNone
Natural Product Identification
Common NameRoseoside
DescriptionRoseoside belongs to the class of organic compounds known as fatty acyl glycosides of mono- and disaccharides. Fatty acyl glycosides of mono- and disaccharides are compounds composed of a mono- or disaccharide moiety linked to one hydroxyl group of a fatty alcohol or of a phosphorylated alcohol (phosphoprenols), a hydroxy fatty acid or to one carboxyl group of a fatty acid (ester linkage) or to an amino alcohol. Roseoside is found in Alangium platanifolium, Antidesma membranaceum, Astragalus complanatus, Baccharis dracunculifolia, Betula pendula, Brachystemma calycinum, Psydrax subcordata, Cistus laurifolius, Clerodendrum indicum, Codonopsis clematidea, Conyza aegyptiaca, Crocus sativus, Croton insularis, Cydonia oblonga, Elaeocarpus japonicus, Epimedium grandiflorum, Eriobotrya japonica, Euphorbia maculata, Hemerocallis fulva, Isatis tinctoria, Juniperus phoenicea, Ligusticum lucidum, Litsea glutinosa, Macaranga tanarius, Mallotus peltatus, Malus domestica, Malus sylvestris, Melaleuca quinquenervia, Morus alba, Ophiorrhiza liukiuensis, Oreocnide rubescens, Persicaria hydropiper, Picris hieracioides, Pinus sylvestris, Prunus domestica, Prunus ssiori, Pyracantha coccinea, Ruellia patula, Ruellia tuberosa, Salvia nemorosa, Thujopsis dolabrata, Trachelospermum jasminoides, Tribulus parvispinus, Trifolium alexandrinum, Vitis vinifera and Wahlenbergia marginata. Roseoside was first documented in 2018 (PMID: 29356892). Based on a literature review a significant number of articles have been published on Roseoside (PMID: 30875889) (PMID: 31496281) (PMID: 30633652) (PMID: 33634716) (PMID: 30556957) (PMID: 29368956).
Structure
Thumb
SynonymsNot Available
Chemical FormulaC19H30O8
Average Mass386.4410 Da
Monoisotopic Mass386.19407 Da
IUPAC Name(4S)-4-hydroxy-3,5,5-trimethyl-4-[(1E,3R)-3-{[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}but-1-en-1-yl]cyclohex-2-en-1-one
Traditional Name(4S)-4-hydroxy-3,5,5-trimethyl-4-[(1E,3R)-3-{[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}but-1-en-1-yl]cyclohex-2-en-1-one
CAS Registry NumberNot Available
SMILES
C[C@@H](O[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O)\C=C\[C@@]1(O)C(C)=CC(=O)CC1(C)C
InChI Identifier
InChI=1S/C19H30O8/c1-10-7-12(21)8-18(3,4)19(10,25)6-5-11(2)26-17-16(24)15(23)14(22)13(9-20)27-17/h5-7,11,13-17,20,22-25H,8-9H2,1-4H3/b6-5+/t11-,13-,14-,15+,16-,17-,19-/m1/s1
InChI KeySWYRVCGNMNAFEK-MHXFFUGFSA-N
Experimental Spectra
Not Available
Predicted Spectra
Spectrum TypeDescriptionDepositor IDDepositor OrganizationDepositorDeposition DateView
1D NMR13C NMR Spectrum (1D, 25 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 100 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 252 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 1000 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 50 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 200 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 75 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 300 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 101 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 400 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 126 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 500 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 151 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 600 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 176 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 700 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 201 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 800 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 226 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 900 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
Chemical Shift Submissions
Not Available
Species
Species of Origin
Species NameSourceReference
Alangium platanifoliumLOTUS Database
Antidesma membranaceumLOTUS Database
Astragalus complanatusLOTUS Database
Baccharis dracunculifoliaLOTUS Database
Betula pendulaLOTUS Database
Brachystemma calycinumLOTUS Database
Canthium subcordatumLOTUS Database
Cistus laurifoliusLOTUS Database
Clerodendrum indicumLOTUS Database
Codonopsis clematideaLOTUS Database
Conyza aegyptiacaLOTUS Database
Crocus sativusLOTUS Database
Croton insularisLOTUS Database
Cydonia oblongaLOTUS Database
Elaeocarpus japonicusLOTUS Database
Epimedium grandiflorumLOTUS Database
Eriobotrya japonicaLOTUS Database
Euphorbia maculataLOTUS Database
Hemerocallis fulvaLOTUS Database
Isatis tinctoriaLOTUS Database
Juniperus phoeniceaLOTUS Database
Ligusticum lucidumLOTUS Database
Litsea glutinosaLOTUS Database
Macaranga tanariusLOTUS Database
Mallotus peltatusLOTUS Database
Malus domesticaLOTUS Database
Malus sylvestrisLOTUS Database
Melaleuca quinquenerviaLOTUS Database
Morus albaLOTUS Database
Ophiorrhiza liukiuensisLOTUS Database
Oreocnide rubescensLOTUS Database
Persicaria hydropiperLOTUS Database
Picris hieracioidesLOTUS Database
Pinus sylvestrisLOTUS Database
Prunus domesticaLOTUS Database
Prunus ssioriLOTUS Database
Pyracantha coccineaLOTUS Database
Ruellia patulaLOTUS Database
Ruellia tuberosaLOTUS Database
Salvia nemorosaLOTUS Database
Thujopsis dolabrataLOTUS Database
Trachelospermum jasminoidesLOTUS Database
Tribulus parvispinusLOTUS Database
Trifolium alexandrinumLOTUS Database
Vitis viniferaLOTUS Database
Wahlenbergia marginataLOTUS Database
Chemical Taxonomy
Description Belongs to the class of organic compounds known as fatty acyl glycosides of mono- and disaccharides. Fatty acyl glycosides of mono- and disaccharides are compounds composed of a mono- or disaccharide moiety linked to one hydroxyl group of a fatty alcohol or of a phosphorylated alcohol (phosphoprenols), a hydroxy fatty acid or to one carboxyl group of a fatty acid (ester linkage) or to an amino alcohol.
KingdomOrganic compounds
Super ClassLipids and lipid-like molecules
ClassFatty Acyls
Sub ClassFatty acyl glycosides
Direct ParentFatty acyl glycosides of mono- and disaccharides
Alternative Parents
Substituents
  • Fatty acyl glycoside of mono- or disaccharide
  • Cyclofarsesane sesquiterpenoid
  • Megastigmane sesquiterpenoid
  • Sesquiterpenoid
  • Ionone derivative
  • Alkyl glycoside
  • Hexose monosaccharide
  • Glycosyl compound
  • O-glycosyl compound
  • Cyclohexenone
  • Monosaccharide
  • Oxane
  • Tertiary alcohol
  • Cyclic ketone
  • Ketone
  • Secondary alcohol
  • Polyol
  • Acetal
  • Organoheterocyclic compound
  • Oxacycle
  • Primary alcohol
  • Organooxygen compound
  • Hydrocarbon derivative
  • Organic oxide
  • Carbonyl group
  • Organic oxygen compound
  • Aldehyde
  • Alcohol
  • Aliphatic heteromonocyclic compound
Molecular FrameworkAliphatic heteromonocyclic compounds
External DescriptorsNot Available
Physical Properties
StateNot Available
Experimental Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Predicted Properties
PropertyValueSource
logP-0.3ALOGPS
logP-0.35ChemAxon
logS-2.1ALOGPS
pKa (Strongest Acidic)12.18ChemAxon
pKa (Strongest Basic)-3ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count8ChemAxon
Hydrogen Donor Count5ChemAxon
Polar Surface Area136.68 ŲChemAxon
Rotatable Bond Count5ChemAxon
Refractivity97.34 m³·mol⁻¹ChemAxon
Polarizability40.5 ųChemAxon
Number of Rings2ChemAxon
BioavailabilityYesChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleNoChemAxon
MDDR-like RuleNoChemAxon
HMDB IDNot Available
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FoodDB IDNot Available
KNApSAcK IDC00029329
Chemspider ID8105695
KEGG Compound IDNot Available
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkNot Available
METLIN IDNot Available
PubChem Compound9930064
PDB IDNot Available
ChEBI IDNot Available
Good Scents IDNot Available
References
General References
  1. de Carvalho Junior AR, Oliveira Ferreira R, de Souza Passos M, da Silva Boeno SI, Gloria das Virgens LL, Ventura TLB, Calixto SD, Lassounskaia E, de Carvalho MG, Braz-Filho R, Curcino Vieira IJ: Antimycobacterial and Nitric Oxide Production Inhibitory Activities of Triterpenes and Alkaloids from Psychotria nuda (Cham. & Schltdl.) Wawra. Molecules. 2019 Mar 15;24(6). pii: molecules24061026. doi: 10.3390/molecules24061026. [PubMed:30875889 ]
  2. Vu LTN, Anh LT, Cuc NT, Nhiem NX, Tai BH, Van Kiem P, Litaudon M, Thach TD, Van Minh C, Mai HDT, Van Cuong P: Prenylated flavonoids and other constituents from Macaranga indica. Nat Prod Res. 2021 Jul;35(13):2123-2130. doi: 10.1080/14786419.2019.1662007. Epub 2019 Sep 9. [PubMed:31496281 ]
  3. Gupta MK, Vadde R: Insights into the structure-function relationship of both wild and mutant zinc transporter ZnT8 in human: a computational structural biology approach. J Biomol Struct Dyn. 2020 Jan;38(1):137-151. doi: 10.1080/07391102.2019.1567391. Epub 2019 Jan 31. [PubMed:30633652 ]
  4. Huong PTT, Tai BH, Nhiem NX, Cuong NX, Quang TH, Thu VK, Yen PH, Kiem PV: Saurobacciosides A - C: three new glycosides from Sauropus bacciformis with their cytotoxic activity. Nat Prod Res. 2022 Mar;36(6):1476-1484. doi: 10.1080/14786419.2021.1892670. Epub 2021 Feb 26. [PubMed:33634716 ]
  5. Revoltella S, Rainer B, Waltenberger B, Pagitz K, Schwaiger S, Stuppner H: HPTLC Autography Based Screening and Isolation of Mushroom Tyrosinase Inhibitors of European Plant Species. Chem Biodivers. 2019 Mar;16(3):e1800541. doi: 10.1002/cbdv.201800541. Epub 2019 Feb 14. [PubMed:30556957 ]
  6. Shao JH, Chen J, Xu XQ, Zhao CC, Dong ZL, Liu WY, Shen J: Chemical constituents and biological activities of Viburnum macrocephalum f. keteleeri. Nat Prod Res. 2019 Jun;33(11):1612-1616. doi: 10.1080/14786419.2018.1428593. Epub 2018 Jan 25. [PubMed:29368956 ]
  7. Cuc NT, Yen DTH, Yen PH, Hang DTT, Tai BH, Seo Y, Namkung W, Kim SH, Cuong PV, Kiem PV, Nhiem NX, Ngoc TM: Dihydrostilbene glycosides from Camellia sinensis var. assamica and their cytotoxic activity. Nat Prod Res. 2022 Aug;36(15):3931-3937. doi: 10.1080/14786419.2021.1900844. Epub 2021 Mar 22. [PubMed:33749416 ]
  8. Lee YR, Park JH, Castaneda Molina R, Nam YH, Lee YG, Hong BN, Baek NI, Kang TH: Skin depigmenting action of silkworm (Bombyx mori L.) droppings in zebrafish. Arch Dermatol Res. 2018 Apr;310(3):245-253. doi: 10.1007/s00403-018-1804-1. Epub 2018 Jan 22. [PubMed:29356892 ]
  9. Ata FK, Ercan F, Azarkan SY: In vivo, in vitro and Molecular Modelling Analysis of Isoquercetin, Roseoside, Coreximine, Anonaine, and Arianacin Molecules. Curr Comput Aided Drug Des. 2022;18(3):168-184. doi: 10.2174/1573409918666220509213313. [PubMed:35538817 ]
  10. Liang SM, Zhang F, Zou YN, Kuca K, Wu QS: Metabolomics Analysis Reveals Drought Responses of Trifoliate Orange by Arbuscular Mycorrhizal Fungi With a Focus on Terpenoid Profile. Front Plant Sci. 2021 Oct 6;12:740524. doi: 10.3389/fpls.2021.740524. eCollection 2021. [PubMed:34691116 ]
  11. Wang YF, He RJ, Li DP, Huang YL: Three new compounds from the leaves of Castanopsis tibetana Hance. Nat Prod Res. 2022 Oct;36(19):4906-4910. doi: 10.1080/14786419.2021.1910690. Epub 2021 Apr 24. [PubMed:33896288 ]
  12. Morcol TB, Wysocki K, Sankaran RP, Matthews PD, Kennelly EJ: UPLC-QTof-MS(E) Metabolomics Reveals Changes in Leaf Primary and Secondary Metabolism of Hop (Humulus lupulus L.) Plants under Drought Stress. J Agric Food Chem. 2020 Dec 9;68(49):14698-14708. doi: 10.1021/acs.jafc.0c05987. Epub 2020 Nov 25. [PubMed:33236890 ]
  13. Yang H, Sun W, Ma P, Yao C, Fan Y, Li S, Yuan J, Zhang Z, Li X, Lin M, Hou Q: Multiple Components Rapidly Screened from Perilla Leaves Attenuate Asthma Airway Inflammation by Synergistic Targeting on Syk. J Inflamm Res. 2020 Nov 13;13:897-911. doi: 10.2147/JIR.S281393. eCollection 2020. [PubMed:33223845 ]
  14. Ebada SS, Al-Jawabri NA, Youssef FS, El-Kashef DH, Knedel TO, Albohy A, Korinek M, Hwang TL, Chen BH, Lin GH, Lin CY, Aldalaien SM, Disi AM, Janiak C, Proksch P: Anti-inflammatory, antiallergic and COVID-19 protease inhibitory activities of phytochemicals from the Jordanian hawksbeard: identification, structure-activity relationships, molecular modeling and impact on its folk medicinal uses. RSC Adv. 2020 Oct 15;10(62):38128-38141. doi: 10.1039/d0ra04876c. eCollection 2020 Oct 12. [PubMed:35515148 ]
  15. Rahim A, Mostofa MG, Sadik MG, Rahman MAA, Khalil MI, Tsukahara T, Nakagawa-Goto K, Alam AK: The anticancer activity of two glycosides from the leaves of Leea aequata L. Nat Prod Res. 2021 Dec;35(24):5867-5871. doi: 10.1080/14786419.2020.1798661. Epub 2020 Jul 27. [PubMed:32713195 ]
  16. Placines C, Castaneda-Loaiza V, Joao Rodrigues M, Pereira CG, Stefanucci A, Mollica A, Zengin G, Llorent-Martinez EJ, Castilho PC, Custodio AL: Phenolic Profile, Toxicity, Enzyme Inhibition, In Silico Studies, and Antioxidant Properties of Cakile maritima Scop. (Brassicaceae) from Southern Portugal. Plants (Basel). 2020 Jan 22;9(2):142. doi: 10.3390/plants9020142. [PubMed:31979182 ]
  17. Zhang Y, Liu J, Guo Z, Li X, Wang M: Chemical constituents from Urtica fissa stem and their inhibitory effects on alpha-glucosidase activity. Nat Prod Res. 2021 Sep;35(18):3011-3017. doi: 10.1080/14786419.2019.1684279. Epub 2019 Nov 1. [PubMed:31674849 ]
  18. Hong EY, Kim TY, Hong GU, Kang H, Lee JY, Park JY, Kim SC, Kim YH, Chung MH, Kwon YI, Ro JY: Inhibitory Effects of Roseoside and Icariside E4 Isolated from a Natural Product Mixture (No-ap) on the Expression of Angiotensin II Receptor 1 and Oxidative Stress in Angiotensin II-Stimulated H9C2 Cells. Molecules. 2019 Jan 23;24(3):414. doi: 10.3390/molecules24030414. [PubMed:30678135 ]
  19. Pacifico S, Piccolella S, Nocera P, Tranquillo E, Dal Poggetto F, Catauro M: New insights into phenol and polyphenol composition of Stevia rebaudiana leaves. J Pharm Biomed Anal. 2019 Jan 30;163:45-57. doi: 10.1016/j.jpba.2018.09.046. Epub 2018 Sep 28. [PubMed:30286435 ]