| Record Information |
|---|
| Version | 2.0 |
|---|
| Created at | 2022-06-29 19:45:23 UTC |
|---|
| Updated at | 2022-06-29 19:45:23 UTC |
|---|
| NP-MRD ID | NP0139238 |
|---|
| Secondary Accession Numbers | None |
|---|
| Natural Product Identification |
|---|
| Common Name | Roseoside |
|---|
| Description | Roseoside belongs to the class of organic compounds known as fatty acyl glycosides of mono- and disaccharides. Fatty acyl glycosides of mono- and disaccharides are compounds composed of a mono- or disaccharide moiety linked to one hydroxyl group of a fatty alcohol or of a phosphorylated alcohol (phosphoprenols), a hydroxy fatty acid or to one carboxyl group of a fatty acid (ester linkage) or to an amino alcohol. Roseoside is found in Alangium platanifolium, Antidesma membranaceum, Astragalus complanatus, Baccharis dracunculifolia, Betula pendula, Brachystemma calycinum, Psydrax subcordata, Cistus laurifolius, Clerodendrum indicum, Codonopsis clematidea, Conyza aegyptiaca, Crocus sativus, Croton insularis, Cydonia oblonga, Elaeocarpus japonicus, Epimedium grandiflorum, Eriobotrya japonica, Euphorbia maculata, Hemerocallis fulva, Isatis tinctoria, Juniperus phoenicea, Ligusticum lucidum, Litsea glutinosa, Macaranga tanarius, Mallotus peltatus, Malus domestica, Malus sylvestris, Melaleuca quinquenervia, Morus alba, Ophiorrhiza liukiuensis, Oreocnide rubescens, Persicaria hydropiper, Picris hieracioides, Pinus sylvestris, Prunus domestica, Prunus ssiori, Pyracantha coccinea, Ruellia patula, Ruellia tuberosa, Salvia nemorosa, Thujopsis dolabrata, Trachelospermum jasminoides, Tribulus parvispinus, Trifolium alexandrinum, Vitis vinifera and Wahlenbergia marginata. Roseoside was first documented in 2018 (PMID: 29356892). Based on a literature review a significant number of articles have been published on Roseoside (PMID: 30875889) (PMID: 31496281) (PMID: 30633652) (PMID: 33634716) (PMID: 30556957) (PMID: 29368956). |
|---|
| Structure | C[C@@H](O[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O)\C=C\[C@@]1(O)C(C)=CC(=O)CC1(C)C InChI=1S/C19H30O8/c1-10-7-12(21)8-18(3,4)19(10,25)6-5-11(2)26-17-16(24)15(23)14(22)13(9-20)27-17/h5-7,11,13-17,20,22-25H,8-9H2,1-4H3/b6-5+/t11-,13-,14-,15+,16-,17-,19-/m1/s1 |
|---|
| Synonyms | Not Available |
|---|
| Chemical Formula | C19H30O8 |
|---|
| Average Mass | 386.4410 Da |
|---|
| Monoisotopic Mass | 386.19407 Da |
|---|
| IUPAC Name | (4S)-4-hydroxy-3,5,5-trimethyl-4-[(1E,3R)-3-{[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}but-1-en-1-yl]cyclohex-2-en-1-one |
|---|
| Traditional Name | (4S)-4-hydroxy-3,5,5-trimethyl-4-[(1E,3R)-3-{[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}but-1-en-1-yl]cyclohex-2-en-1-one |
|---|
| CAS Registry Number | Not Available |
|---|
| SMILES | C[C@@H](O[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O)\C=C\[C@@]1(O)C(C)=CC(=O)CC1(C)C |
|---|
| InChI Identifier | InChI=1S/C19H30O8/c1-10-7-12(21)8-18(3,4)19(10,25)6-5-11(2)26-17-16(24)15(23)14(22)13(9-20)27-17/h5-7,11,13-17,20,22-25H,8-9H2,1-4H3/b6-5+/t11-,13-,14-,15+,16-,17-,19-/m1/s1 |
|---|
| InChI Key | SWYRVCGNMNAFEK-MHXFFUGFSA-N |
|---|
| Experimental Spectra |
|---|
|
| Not Available | | Predicted Spectra |
|---|
|
| | Spectrum Type | Description | Depositor ID | Depositor Organization | Depositor | Deposition Date | View |
|---|
| 1D NMR | 13C NMR Spectrum (1D, 25 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 100 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 252 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 1000 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 50 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 200 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 75 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 300 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 101 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 400 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 126 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 500 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 151 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 600 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 176 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 700 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 201 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 800 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 226 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 900 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum |
| | Chemical Shift Submissions |
|---|
|
| Not Available | | Species |
|---|
| Species of Origin | |
|---|
| Chemical Taxonomy |
|---|
| Description | Belongs to the class of organic compounds known as fatty acyl glycosides of mono- and disaccharides. Fatty acyl glycosides of mono- and disaccharides are compounds composed of a mono- or disaccharide moiety linked to one hydroxyl group of a fatty alcohol or of a phosphorylated alcohol (phosphoprenols), a hydroxy fatty acid or to one carboxyl group of a fatty acid (ester linkage) or to an amino alcohol. |
|---|
| Kingdom | Organic compounds |
|---|
| Super Class | Lipids and lipid-like molecules |
|---|
| Class | Fatty Acyls |
|---|
| Sub Class | Fatty acyl glycosides |
|---|
| Direct Parent | Fatty acyl glycosides of mono- and disaccharides |
|---|
| Alternative Parents | |
|---|
| Substituents | - Fatty acyl glycoside of mono- or disaccharide
- Cyclofarsesane sesquiterpenoid
- Megastigmane sesquiterpenoid
- Sesquiterpenoid
- Ionone derivative
- Alkyl glycoside
- Hexose monosaccharide
- Glycosyl compound
- O-glycosyl compound
- Cyclohexenone
- Monosaccharide
- Oxane
- Tertiary alcohol
- Cyclic ketone
- Ketone
- Secondary alcohol
- Polyol
- Acetal
- Organoheterocyclic compound
- Oxacycle
- Primary alcohol
- Organooxygen compound
- Hydrocarbon derivative
- Organic oxide
- Carbonyl group
- Organic oxygen compound
- Aldehyde
- Alcohol
- Aliphatic heteromonocyclic compound
|
|---|
| Molecular Framework | Aliphatic heteromonocyclic compounds |
|---|
| External Descriptors | Not Available |
|---|
| Physical Properties |
|---|
| State | Not Available |
|---|
| Experimental Properties | | Property | Value | Reference |
|---|
| Melting Point | Not Available | Not Available | | Boiling Point | Not Available | Not Available | | Water Solubility | Not Available | Not Available | | LogP | Not Available | Not Available |
|
|---|
| Predicted Properties | |
|---|
| General References | - de Carvalho Junior AR, Oliveira Ferreira R, de Souza Passos M, da Silva Boeno SI, Gloria das Virgens LL, Ventura TLB, Calixto SD, Lassounskaia E, de Carvalho MG, Braz-Filho R, Curcino Vieira IJ: Antimycobacterial and Nitric Oxide Production Inhibitory Activities of Triterpenes and Alkaloids from Psychotria nuda (Cham. & Schltdl.) Wawra. Molecules. 2019 Mar 15;24(6). pii: molecules24061026. doi: 10.3390/molecules24061026. [PubMed:30875889 ]
- Vu LTN, Anh LT, Cuc NT, Nhiem NX, Tai BH, Van Kiem P, Litaudon M, Thach TD, Van Minh C, Mai HDT, Van Cuong P: Prenylated flavonoids and other constituents from Macaranga indica. Nat Prod Res. 2021 Jul;35(13):2123-2130. doi: 10.1080/14786419.2019.1662007. Epub 2019 Sep 9. [PubMed:31496281 ]
- Gupta MK, Vadde R: Insights into the structure-function relationship of both wild and mutant zinc transporter ZnT8 in human: a computational structural biology approach. J Biomol Struct Dyn. 2020 Jan;38(1):137-151. doi: 10.1080/07391102.2019.1567391. Epub 2019 Jan 31. [PubMed:30633652 ]
- Huong PTT, Tai BH, Nhiem NX, Cuong NX, Quang TH, Thu VK, Yen PH, Kiem PV: Saurobacciosides A - C: three new glycosides from Sauropus bacciformis with their cytotoxic activity. Nat Prod Res. 2022 Mar;36(6):1476-1484. doi: 10.1080/14786419.2021.1892670. Epub 2021 Feb 26. [PubMed:33634716 ]
- Revoltella S, Rainer B, Waltenberger B, Pagitz K, Schwaiger S, Stuppner H: HPTLC Autography Based Screening and Isolation of Mushroom Tyrosinase Inhibitors of European Plant Species. Chem Biodivers. 2019 Mar;16(3):e1800541. doi: 10.1002/cbdv.201800541. Epub 2019 Feb 14. [PubMed:30556957 ]
- Shao JH, Chen J, Xu XQ, Zhao CC, Dong ZL, Liu WY, Shen J: Chemical constituents and biological activities of Viburnum macrocephalum f. keteleeri. Nat Prod Res. 2019 Jun;33(11):1612-1616. doi: 10.1080/14786419.2018.1428593. Epub 2018 Jan 25. [PubMed:29368956 ]
- Cuc NT, Yen DTH, Yen PH, Hang DTT, Tai BH, Seo Y, Namkung W, Kim SH, Cuong PV, Kiem PV, Nhiem NX, Ngoc TM: Dihydrostilbene glycosides from Camellia sinensis var. assamica and their cytotoxic activity. Nat Prod Res. 2022 Aug;36(15):3931-3937. doi: 10.1080/14786419.2021.1900844. Epub 2021 Mar 22. [PubMed:33749416 ]
- Lee YR, Park JH, Castaneda Molina R, Nam YH, Lee YG, Hong BN, Baek NI, Kang TH: Skin depigmenting action of silkworm (Bombyx mori L.) droppings in zebrafish. Arch Dermatol Res. 2018 Apr;310(3):245-253. doi: 10.1007/s00403-018-1804-1. Epub 2018 Jan 22. [PubMed:29356892 ]
- Ata FK, Ercan F, Azarkan SY: In vivo, in vitro and Molecular Modelling Analysis of Isoquercetin, Roseoside, Coreximine, Anonaine, and Arianacin Molecules. Curr Comput Aided Drug Des. 2022;18(3):168-184. doi: 10.2174/1573409918666220509213313. [PubMed:35538817 ]
- Liang SM, Zhang F, Zou YN, Kuca K, Wu QS: Metabolomics Analysis Reveals Drought Responses of Trifoliate Orange by Arbuscular Mycorrhizal Fungi With a Focus on Terpenoid Profile. Front Plant Sci. 2021 Oct 6;12:740524. doi: 10.3389/fpls.2021.740524. eCollection 2021. [PubMed:34691116 ]
- Wang YF, He RJ, Li DP, Huang YL: Three new compounds from the leaves of Castanopsis tibetana Hance. Nat Prod Res. 2022 Oct;36(19):4906-4910. doi: 10.1080/14786419.2021.1910690. Epub 2021 Apr 24. [PubMed:33896288 ]
- Morcol TB, Wysocki K, Sankaran RP, Matthews PD, Kennelly EJ: UPLC-QTof-MS(E) Metabolomics Reveals Changes in Leaf Primary and Secondary Metabolism of Hop (Humulus lupulus L.) Plants under Drought Stress. J Agric Food Chem. 2020 Dec 9;68(49):14698-14708. doi: 10.1021/acs.jafc.0c05987. Epub 2020 Nov 25. [PubMed:33236890 ]
- Yang H, Sun W, Ma P, Yao C, Fan Y, Li S, Yuan J, Zhang Z, Li X, Lin M, Hou Q: Multiple Components Rapidly Screened from Perilla Leaves Attenuate Asthma Airway Inflammation by Synergistic Targeting on Syk. J Inflamm Res. 2020 Nov 13;13:897-911. doi: 10.2147/JIR.S281393. eCollection 2020. [PubMed:33223845 ]
- Ebada SS, Al-Jawabri NA, Youssef FS, El-Kashef DH, Knedel TO, Albohy A, Korinek M, Hwang TL, Chen BH, Lin GH, Lin CY, Aldalaien SM, Disi AM, Janiak C, Proksch P: Anti-inflammatory, antiallergic and COVID-19 protease inhibitory activities of phytochemicals from the Jordanian hawksbeard: identification, structure-activity relationships, molecular modeling and impact on its folk medicinal uses. RSC Adv. 2020 Oct 15;10(62):38128-38141. doi: 10.1039/d0ra04876c. eCollection 2020 Oct 12. [PubMed:35515148 ]
- Rahim A, Mostofa MG, Sadik MG, Rahman MAA, Khalil MI, Tsukahara T, Nakagawa-Goto K, Alam AK: The anticancer activity of two glycosides from the leaves of Leea aequata L. Nat Prod Res. 2021 Dec;35(24):5867-5871. doi: 10.1080/14786419.2020.1798661. Epub 2020 Jul 27. [PubMed:32713195 ]
- Placines C, Castaneda-Loaiza V, Joao Rodrigues M, Pereira CG, Stefanucci A, Mollica A, Zengin G, Llorent-Martinez EJ, Castilho PC, Custodio AL: Phenolic Profile, Toxicity, Enzyme Inhibition, In Silico Studies, and Antioxidant Properties of Cakile maritima Scop. (Brassicaceae) from Southern Portugal. Plants (Basel). 2020 Jan 22;9(2):142. doi: 10.3390/plants9020142. [PubMed:31979182 ]
- Zhang Y, Liu J, Guo Z, Li X, Wang M: Chemical constituents from Urtica fissa stem and their inhibitory effects on alpha-glucosidase activity. Nat Prod Res. 2021 Sep;35(18):3011-3017. doi: 10.1080/14786419.2019.1684279. Epub 2019 Nov 1. [PubMed:31674849 ]
- Hong EY, Kim TY, Hong GU, Kang H, Lee JY, Park JY, Kim SC, Kim YH, Chung MH, Kwon YI, Ro JY: Inhibitory Effects of Roseoside and Icariside E4 Isolated from a Natural Product Mixture (No-ap) on the Expression of Angiotensin II Receptor 1 and Oxidative Stress in Angiotensin II-Stimulated H9C2 Cells. Molecules. 2019 Jan 23;24(3):414. doi: 10.3390/molecules24030414. [PubMed:30678135 ]
- Pacifico S, Piccolella S, Nocera P, Tranquillo E, Dal Poggetto F, Catauro M: New insights into phenol and polyphenol composition of Stevia rebaudiana leaves. J Pharm Biomed Anal. 2019 Jan 30;163:45-57. doi: 10.1016/j.jpba.2018.09.046. Epub 2018 Sep 28. [PubMed:30286435 ]
|
|---|