| Record Information |
|---|
| Version | 2.0 |
|---|
| Created at | 2022-06-29 19:40:19 UTC |
|---|
| Updated at | 2022-06-29 19:40:19 UTC |
|---|
| NP-MRD ID | NP0139123 |
|---|
| Secondary Accession Numbers | None |
|---|
| Natural Product Identification |
|---|
| Common Name | Platycodin D3 |
|---|
| Description | Platycodin D3 belongs to the class of organic compounds known as triterpene saponins. These are glycosylated derivatives of triterpene sapogenins. The sapogenin moiety backbone is usually based on the oleanane, ursane, taraxastane, bauerane, lanostane, lupeol, lupane, dammarane, cycloartane, friedelane, hopane, 9b,19-cyclo-lanostane, cycloartane, or cycloartanol skeleton. Platycodin D3 is found in Platycodon grandiflorus. Platycodin D3 was first documented in 2018 (PMID: 30322157). Based on a literature review a significant number of articles have been published on Platycodin D3 (PMID: 33459309) (PMID: 35423572) (PMID: 35496272) (PMID: 33872929) (PMID: 32054089) (PMID: 31394870). |
|---|
| Structure | CC1OC(OC2C(O)C(O)COC2OC(=O)C23CCC(C)(C)CC2C2=CCC4C5(C)CC(O)C(OC6OC(COC7OC(CO)C(O)C(O)C7O)C(O)C(O)C6O)C(CO)(CO)C5CCC4(C)C2(C)CC3O)C(O)C(O)C1OC1OCC(O)C(OC2OCC(O)(CO)C2O)C1O InChI=1S/C63H102O33/c1-24-45(92-51-44(81)46(29(70)18-85-51)93-55-48(82)62(84,22-67)23-88-55)40(77)43(80)52(89-24)94-47-35(72)28(69)17-86-54(47)96-56(83)63-12-11-57(2,3)13-26(63)25-7-8-32-58(4)14-27(68)49(61(20-65,21-66)33(58)9-10-59(32,5)60(25,6)15-34(63)71)95-53-42(79)39(76)37(74)31(91-53)19-87-50-41(78)38(75)36(73)30(16-64)90-50/h7,24,26-55,64-82,84H,8-23H2,1-6H3 |
|---|
| Synonyms | Not Available |
|---|
| Chemical Formula | C63H102O33 |
|---|
| Average Mass | 1387.4760 Da |
|---|
| Monoisotopic Mass | 1386.63034 Da |
|---|
| IUPAC Name | Not Available |
|---|
| Traditional Name | Not Available |
|---|
| CAS Registry Number | Not Available |
|---|
| SMILES | CC1OC(OC2C(O)C(O)COC2OC(=O)C23CCC(C)(C)CC2C2=CCC4C5(C)CC(O)C(OC6OC(COC7OC(CO)C(O)C(O)C7O)C(O)C(O)C6O)C(CO)(CO)C5CCC4(C)C2(C)CC3O)C(O)C(O)C1OC1OCC(O)C(OC2OCC(O)(CO)C2O)C1O |
|---|
| InChI Identifier | InChI=1S/C63H102O33/c1-24-45(92-51-44(81)46(29(70)18-85-51)93-55-48(82)62(84,22-67)23-88-55)40(77)43(80)52(89-24)94-47-35(72)28(69)17-86-54(47)96-56(83)63-12-11-57(2,3)13-26(63)25-7-8-32-58(4)14-27(68)49(61(20-65,21-66)33(58)9-10-59(32,5)60(25,6)15-34(63)71)95-53-42(79)39(76)37(74)31(91-53)19-87-50-41(78)38(75)36(73)30(16-64)90-50/h7,24,26-55,64-82,84H,8-23H2,1-6H3 |
|---|
| InChI Key | XHKCYIRZWRRXNG-UHFFFAOYSA-N |
|---|
| Experimental Spectra |
|---|
|
| Not Available | | Predicted Spectra |
|---|
|
| | Spectrum Type | Description | Depositor ID | Depositor Organization | Depositor | Deposition Date | View |
|---|
| 1D NMR | 13C NMR Spectrum (1D, 25 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 100 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 252 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 1000 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 50 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 200 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 75 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 300 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 101 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 400 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 126 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 500 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 151 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 600 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 176 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 700 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 201 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 800 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 226 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 900 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum |
| | Chemical Shift Submissions |
|---|
|
| Not Available | | Species |
|---|
| Species of Origin | |
|---|
| Chemical Taxonomy |
|---|
| Description | Belongs to the class of organic compounds known as triterpene saponins. These are glycosylated derivatives of triterpene sapogenins. The sapogenin moiety backbone is usually based on the oleanane, ursane, taraxastane, bauerane, lanostane, lupeol, lupane, dammarane, cycloartane, friedelane, hopane, 9b,19-cyclo-lanostane, cycloartane, or cycloartanol skeleton. |
|---|
| Kingdom | Organic compounds |
|---|
| Super Class | Lipids and lipid-like molecules |
|---|
| Class | Prenol lipids |
|---|
| Sub Class | Terpene glycosides |
|---|
| Direct Parent | Triterpene saponins |
|---|
| Alternative Parents | |
|---|
| Substituents | - Triterpene saponin
- Triterpenoid
- Oligosaccharide
- 12-hydroxysteroid
- Hydroxysteroid
- Steroid
- Fatty acyl glycoside
- Glycosyl compound
- O-glycosyl compound
- Beta-hydroxy acid
- Fatty acyl
- Oxane
- Hydroxy acid
- Tetrahydrofuran
- Tertiary alcohol
- Cyclic alcohol
- Secondary alcohol
- Carboxylic acid ester
- Organoheterocyclic compound
- Oxacycle
- Carboxylic acid derivative
- Polyol
- Acetal
- Monocarboxylic acid or derivatives
- Alcohol
- Primary alcohol
- Carbonyl group
- Organooxygen compound
- Hydrocarbon derivative
- Organic oxygen compound
- Organic oxide
- Aliphatic heteropolycyclic compound
|
|---|
| Molecular Framework | Aliphatic heteropolycyclic compounds |
|---|
| External Descriptors | Not Available |
|---|
| Physical Properties |
|---|
| State | Not Available |
|---|
| Experimental Properties | | Property | Value | Reference |
|---|
| Melting Point | Not Available | Not Available | | Boiling Point | Not Available | Not Available | | Water Solubility | Not Available | Not Available | | LogP | Not Available | Not Available |
|
|---|
| Predicted Properties | |
|---|
| General References | - Yu J, Chang X, Peng H, Wang X, Wang J, Peng D, Gui S: A strategy based on isocratic and linear-gradient high-speed counter-current chromatography for the comprehensive separation of platycosides from Platycodi radix. Anal Methods. 2021 Jan 28;13(4):477-483. doi: 10.1039/d0ay02029j. Epub 2021 Jan 18. [PubMed:33459309 ]
- Wang Z, Cai J, Fu Q, Cheng L, Wu L, Zhang W, Zhang Y, Jin Y, Zhang C: Anti-Inflammatory Activities of Compounds Isolated from the Rhizome of Anemarrhena asphodeloides. Molecules. 2018 Oct 13;23(10). pii: molecules23102631. doi: 10.3390/molecules23102631. [PubMed:30322157 ]
- Ma X, Shao S, Xiao F, Zhang H, Zhang R, Wang M, Li G, Yan M: Platycodon grandiflorum extract: chemical composition and whitening, antioxidant, and anti-inflammatory effects. RSC Adv. 2021 Mar 15;11(18):10814-10826. doi: 10.1039/d0ra09443a. eCollection 2021 Mar 10. [PubMed:35423572 ]
- Yang R, Pei T, Huang R, Xiao Y, Yan J, Zhu J, Zheng C, Xiao W, Huang C: Platycodon grandiflorum Triggers Antitumor Immunity by Restricting PD-1 Expression of CD8(+) T Cells in Local Tumor Microenvironment. Front Pharmacol. 2022 Apr 14;13:774440. doi: 10.3389/fphar.2022.774440. eCollection 2022. [PubMed:35496272 ]
- Zhang C, Liang J, Zhou L, Yuan E, Zeng J, Zhu J, Zhu Y, Zhou L, Wang CZ, Yuan CS: Components study on antitussive effect and holistic mechanism of Platycodonis Radix based on spectrum-effect relationship and metabonomics analysis. J Chromatogr B Analyt Technol Biomed Life Sci. 2021 Apr 2;1173:122680. doi: 10.1016/j.jchromb.2021.122680. [PubMed:33872929 ]
- Shin KC, Kim DW, Woo HS, Oh DK, Kim YS: Conversion of Glycosylated Platycoside E to Deapiose-Xylosylated Platycodin D by Cytolase PCL5. Int J Mol Sci. 2020 Feb 11;21(4):1207. doi: 10.3390/ijms21041207. [PubMed:32054089 ]
- Kil TG, Kang SH, Kim TH, Shin KC, Oh DK: Enzymatic Biotransformation of Balloon Flower Root Saponins into Bioactive Platycodin D by Deglucosylation with Caldicellulosiruptor bescii beta-Glucosidase. Int J Mol Sci. 2019 Aug 7;20(16):3854. doi: 10.3390/ijms20163854. [PubMed:31394870 ]
- Ahn HJ, You HJ, Park MS, Johnston TV, Ku S, Ji GE: Biocatalysis of Platycoside E and Platycodin D3 Using Fungal Extracellular beta-Glucosidase Responsible for Rapid Platycodin D Production. Int J Mol Sci. 2018 Sep 8;19(9):2671. doi: 10.3390/ijms19092671. [PubMed:30205574 ]
|
|---|