| Record Information |
|---|
| Version | 2.0 |
|---|
| Created at | 2022-04-28 20:35:47 UTC |
|---|
| Updated at | 2022-04-28 20:35:47 UTC |
|---|
| NP-MRD ID | NP0075300 |
|---|
| Secondary Accession Numbers | None |
|---|
| Natural Product Identification |
|---|
| Common Name | Dodecanamide |
|---|
| Description | Dodecanamide, also known as lauramide, belongs to the class of organic compounds known as fatty amides. These are carboxylic acid amide derivatives of fatty acids, that are formed from a fatty acid and an amine. Thus, dodecanamide is considered to be a fatty amide. Dodecanamide is a secondary metabolite. Secondary metabolites are metabolically or physiologically non-essential metabolites that may serve a role as defense or signalling molecules. In some cases they are simply molecules that arise from the incomplete metabolism of other secondary metabolites. Dodecanamide is found in Apis cerana, Rhizoclonium hieroglyphicum and Vitis vinifera. Dodecanamide was first documented in 2017 (PMID: 29179468). Based on a literature review a significant number of articles have been published on Dodecanamide (PMID: 35369588) (PMID: 34515383) (PMID: 33389242) (PMID: 33168861) (PMID: 32605744) (PMID: 31048120). |
|---|
| Structure | InChI=1S/C12H25NO/c1-2-3-4-5-6-7-8-9-10-11-12(13)14/h2-11H2,1H3,(H2,13,14) |
|---|
| Synonyms | | Value | Source |
|---|
| Lauramide | ChEBI |
|
|---|
| Chemical Formula | C12H25NO |
|---|
| Average Mass | 199.3380 Da |
|---|
| Monoisotopic Mass | 199.19361 Da |
|---|
| IUPAC Name | dodecanamide |
|---|
| Traditional Name | dodecanamide |
|---|
| CAS Registry Number | Not Available |
|---|
| SMILES | CCCCCCCCCCCC(N)=O |
|---|
| InChI Identifier | InChI=1S/C12H25NO/c1-2-3-4-5-6-7-8-9-10-11-12(13)14/h2-11H2,1H3,(H2,13,14) |
|---|
| InChI Key | ILRSCQWREDREME-UHFFFAOYSA-N |
|---|
| Experimental Spectra |
|---|
|
| Not Available | | Predicted Spectra |
|---|
|
| | Spectrum Type | Description | Depositor ID | Depositor Organization | Depositor | Deposition Date | View |
|---|
| 1D NMR | 13C NMR Spectrum (1D, 25 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 100 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 252 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 1000 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 50 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 200 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 75 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 300 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 101 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 400 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 126 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 500 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 151 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 600 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 176 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 700 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 201 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 800 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 226 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 900 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum |
| | Chemical Shift Submissions |
|---|
|
| Not Available | | Species |
|---|
| Species of Origin | |
|---|
| Chemical Taxonomy |
|---|
| Description | Belongs to the class of organic compounds known as fatty amides. These are carboxylic acid amide derivatives of fatty acids, that are formed from a fatty acid and an amine. |
|---|
| Kingdom | Organic compounds |
|---|
| Super Class | Lipids and lipid-like molecules |
|---|
| Class | Fatty Acyls |
|---|
| Sub Class | Fatty amides |
|---|
| Direct Parent | Fatty amides |
|---|
| Alternative Parents | |
|---|
| Substituents | - Fatty amide
- Primary carboxylic acid amide
- Carboxamide group
- Carboxylic acid derivative
- Organic nitrogen compound
- Organic oxygen compound
- Organopnictogen compound
- Organic oxide
- Hydrocarbon derivative
- Organooxygen compound
- Organonitrogen compound
- Carbonyl group
- Aliphatic acyclic compound
|
|---|
| Molecular Framework | Aliphatic acyclic compounds |
|---|
| External Descriptors | |
|---|
| Physical Properties |
|---|
| State | Not Available |
|---|
| Experimental Properties | | Property | Value | Reference |
|---|
| Melting Point | Not Available | Not Available | | Boiling Point | Not Available | Not Available | | Water Solubility | Not Available | Not Available | | LogP | Not Available | Not Available |
|
|---|
| Predicted Properties | |
|---|
| General References | - Swantara MD, Rita WS, Dira MA, Karang Agustina K: Cervical anticancer activities of Annona squamosa Linn. leaf isolate. Vet World. 2022 Jan;15(1):124-131. doi: 10.14202/vetworld.2022.124-131. Epub 2022 Jan 24. [PubMed:35369588 ]
- Andre R, Guedes R, Lopez J, Serralheiro ML: Untargeted metabolomic study of HepG2 cells under the effect of Fucus vesiculosus aqueous extract. Rapid Commun Mass Spectrom. 2021 Dec 15;35(23):e9197. doi: 10.1002/rcm.9197. [PubMed:34515383 ]
- Kumar A, Patel S, Bhatkar D, Sarode SC, Sharma NK: A novel method to detect intracellular metabolite alterations in MCF-7 cells by doxorubicin induced cell death. Metabolomics. 2021 Jan 3;17(1):3. doi: 10.1007/s11306-020-01755-2. [PubMed:33389242 ]
- Crivelli SM, van Kruining D, Luo Q, Stevens JAA, Giovagnoni C, Paulus A, Bauwens M, Berkes D, de Vries HE, Mulder MT, Walter J, Waelkens E, Derua R, Swinnen JV, Dehairs J, Mottaghy FM, Losen M, Bieberich E, Martinez-Martinez P: Ceramide analog [(18)F]F-HPA-12 detects sphingolipid disbalance in the brain of Alzheimer's disease transgenic mice by functioning as a metabolic probe. Sci Rep. 2020 Nov 9;10(1):19354. doi: 10.1038/s41598-020-76335-4. [PubMed:33168861 ]
- Zhang L, Wang T, Song M, Jin M, Liu S, Guo K, Zhang Y: Rab1b-GBF1-ARFs mediated intracellular trafficking is required for classical swine fever virus replication in swine umbilical vein endothelial cells. Vet Microbiol. 2020 Jul;246:108743. doi: 10.1016/j.vetmic.2020.108743. Epub 2020 Jun 1. [PubMed:32605744 ]
- Al-Malki AL, Razvi SS, Mohammed FA, Zamzami MA, Choudhry H, Kumosani TA, Balamash KS, Alshubaily FA, ALGhamdi SA, Abualnaja KO, Abdulaal WH, Zeyadi MA, Al-Zahrani MH, Alhosin M, Asami T, Moselhy SS: Synthesis and in vitro antitumor activity of novel acylspermidine derivative N-(4-aminobutyl)-N-(3-aminopropyl)-8-hydroxy-dodecanamide (AAHD) against HepG2 cells. Bioorg Chem. 2019 Jul;88:102937. doi: 10.1016/j.bioorg.2019.102937. Epub 2019 Apr 16. [PubMed:31048120 ]
- Abd El-Mawgoud HK, Mohamed Hemdan M: Utility of Lauroyl Isothiocyanate as a Scaffold in the Synthesis of Some Novel Pyrimidine Derivatives and Their Antimicrobial Assessment. Chem Pharm Bull (Tokyo). 2018;66(11):1072-1077. doi: 10.1248/cpb.c18-00595. [PubMed:30381659 ]
- Janus MM, Volgenant CMC, Krom BP: [Innovative application of small molecules to influence -pathogenicity of dental plaque]. Ned Tijdschr Tandheelkd. 2018 May;125(5):269-275. doi: 10.5177/ntvt.2018.05.17169. [PubMed:29754156 ]
- Tan G, Zhao B, Li Y, Liu X, Zou Z, Wan J, Yao Y, Xiong H, Wang Y: Pharmacometabolomics identifies dodecanamide and leukotriene B4 dimethylamide as a predictor of chemosensitivity for patients with acute myeloid leukemia treated with cytarabine and anthracycline. Oncotarget. 2017 Sep 8;8(51):88697-88707. doi: 10.18632/oncotarget.20733. eCollection 2017 Oct 24. [PubMed:29179468 ]
- Crivelli SM, Paulus A, Markus J, Bauwens M, Berkes D, De Vries HE, Mulder MT, Walter J, Mottaghy FM, Losen M, Martinez-Martinez P: Synthesis, Radiosynthesis, and Preliminary in vitro and in vivo Evaluation of the Fluorinated Ceramide Trafficking Inhibitor (HPA-12) for Brain Applications. J Alzheimers Dis. 2017;60(3):783-794. doi: 10.3233/JAD-161231. [PubMed:28922150 ]
|
|---|