| Record Information |
|---|
| Version | 2.0 |
|---|
| Created at | 2022-04-28 12:57:40 UTC |
|---|
| Updated at | 2022-04-28 12:57:40 UTC |
|---|
| NP-MRD ID | NP0068058 |
|---|
| Secondary Accession Numbers | None |
|---|
| Natural Product Identification |
|---|
| Common Name | (+)-Isotrilobine |
|---|
| Description | ISOTRILOBINE belongs to the class of organic compounds known as lignans, neolignans and related compounds. These are plant products of low molecular weight formed primarily from oxidative coupling of two p-propylphenol moieties. They can also be described as micromolecules with two phenylpropanoid units coupled together. They can be attached in various manners, like C5-C5', C8-C8'. Most known natural lignans are oxidized at C9 and C9´ and, based upon the way in which oxygen is incorporated into the skeleton and on the cyclization patterns, a wide range of lignans of very different structural types can be formed. (+)-Isotrilobine is found in Albertisia papuana, Anisocycla jollyana (Pierre) Diels, Cocculus hirsutus (L.) Diels , Cocculus orbiculatus, Cocculus pendulus, Cocculus pendulus (Forsk.) Diels , Cocculus sarmentosus Diels, Cocculus trilobus DC. , Pachygone dasycarpa Kurz, Pachygone loyaltiensis Diels, Stepania japonica, Stephania hernandifolia (Willd.) Walp. and Stephania japonica. (+)-Isotrilobine was first documented in 2016 (PMID: 27563224). Based on a literature review very few articles have been published on ISOTRILOBINE (PMID: 33166629). |
|---|
| Structure | COC1=CC2=C3[C@H](CC4=CC=C(OC5=C(OC)C=CC(C[C@@H]6N(C)CCC7=CC8=C(OC3=C1O8)C=C67)=C5)C=C4)N(C)CC2 InChI=1S/C36H36N2O5/c1-37-13-11-23-18-31-32-20-26(23)27(37)16-22-7-10-29(39-3)30(17-22)41-25-8-5-21(6-9-25)15-28-34-24(12-14-38(28)2)19-33(40-4)35(42-31)36(34)43-32/h5-10,17-20,27-28H,11-16H2,1-4H3/t27-,28-/m0/s1 |
|---|
| Synonyms | Not Available |
|---|
| Chemical Formula | C36H36N2O5 |
|---|
| Average Mass | 576.6930 Da |
|---|
| Monoisotopic Mass | 576.26242 Da |
|---|
| IUPAC Name | (8S,21S)-13,27-dimethoxy-7,22-dimethyl-15,29,31-trioxa-7,22-diazaoctacyclo[19.9.3.2^{16,19}.1^{4,30}.1^{10,14}.0^{3,8}.0^{25,33}.0^{28,32}]heptatriaconta-1(30),2,4(34),10(37),11,13,16,18,25(33),26,28(32),35-dodecaene |
|---|
| Traditional Name | (8S,21S)-13,27-dimethoxy-7,22-dimethyl-15,29,31-trioxa-7,22-diazaoctacyclo[19.9.3.2^{16,19}.1^{4,30}.1^{10,14}.0^{3,8}.0^{25,33}.0^{28,32}]heptatriaconta-1(30),2,4(34),10(37),11,13,16,18,25(33),26,28(32),35-dodecaene |
|---|
| CAS Registry Number | Not Available |
|---|
| SMILES | COC1=CC2=C3[C@H](CC4=CC=C(OC5=C(OC)C=CC(C[C@@H]6N(C)CCC7=CC8=C(OC3=C1O8)C=C67)=C5)C=C4)N(C)CC2 |
|---|
| InChI Identifier | InChI=1S/C36H36N2O5/c1-37-13-11-23-18-31-32-20-26(23)27(37)16-22-7-10-29(39-3)30(17-22)41-25-8-5-21(6-9-25)15-28-34-24(12-14-38(28)2)19-33(40-4)35(42-31)36(34)43-32/h5-10,17-20,27-28H,11-16H2,1-4H3/t27-,28-/m0/s1 |
|---|
| InChI Key | SVMNNRZZJAFEJM-NSOVKSMOSA-N |
|---|
| Experimental Spectra |
|---|
|
| Not Available | | Predicted Spectra |
|---|
|
| | Spectrum Type | Description | Depositor ID | Depositor Organization | Depositor | Deposition Date | View |
|---|
| 1D NMR | 13C NMR Spectrum (1D, 25 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 100 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 252 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 1000 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 50 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 200 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 75 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 300 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 101 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 400 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 126 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 500 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 151 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 600 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 176 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 700 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 201 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 800 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 226 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 900 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum |
| | Chemical Shift Submissions |
|---|
|
| Not Available | | Species |
|---|
| Species of Origin | |
|---|
| Chemical Taxonomy |
|---|
| Description | Belongs to the class of organic compounds known as lignans, neolignans and related compounds. These are plant products of low molecular weight formed primarily from oxidative coupling of two p-propylphenol moieties. They can also be described as micromolecules with two phenylpropanoid units coupled together. They can be attached in various manners, like C5-C5', C8-C8'. Most known natural lignans are oxidized at C9 and C9´ and, based upon the way in which oxygen is incorporated into the skeleton and on the cyclization patterns, a wide range of lignans of very different structural types can be formed. |
|---|
| Kingdom | Organic compounds |
|---|
| Super Class | Lignans, neolignans and related compounds |
|---|
| Class | Not Available |
|---|
| Sub Class | Not Available |
|---|
| Direct Parent | Lignans, neolignans and related compounds |
|---|
| Alternative Parents | |
|---|
| Substituents | - Oxyneolignan skeleton
- Dibenzo-p-dioxin
- Diaryl ether
- Tetrahydroisoquinoline
- Anisole
- Phenol ether
- Alkyl aryl ether
- Aralkylamine
- Benzenoid
- Tertiary aliphatic amine
- Tertiary amine
- Azacycle
- Oxacycle
- Ether
- Organoheterocyclic compound
- Amine
- Organooxygen compound
- Organonitrogen compound
- Hydrocarbon derivative
- Organic oxygen compound
- Organic nitrogen compound
- Aromatic heteropolycyclic compound
|
|---|
| Molecular Framework | Aromatic heteropolycyclic compounds |
|---|
| External Descriptors | Not Available |
|---|
| Physical Properties |
|---|
| State | Not Available |
|---|
| Experimental Properties | | Property | Value | Reference |
|---|
| Melting Point | Not Available | Not Available | | Boiling Point | Not Available | Not Available | | Water Solubility | Not Available | Not Available | | LogP | Not Available | Not Available |
|
|---|
| Predicted Properties | |
|---|