| Record Information |
|---|
| Version | 2.0 |
|---|
| Created at | 2022-04-28 11:01:46 UTC |
|---|
| Updated at | 2022-04-28 11:01:46 UTC |
|---|
| NP-MRD ID | NP0066799 |
|---|
| Secondary Accession Numbers | None |
|---|
| Natural Product Identification |
|---|
| Common Name | (+)-Tazettine |
|---|
| Description | Tazettine, also known as sekisanolin or ungernine, belongs to the class of organic compounds known as tazettine-type amaryllidaceae alkaloids. These are amaryllidaceae alkaloids derived from the haemanthamine-type alkaloids, which are characterized as a linkage between C6 and C11 by an oxygen atom to form a [3,4-g]benzopyran framework. (+)-Tazettine is found in Brunsvigia gregaria, Crinum amabile , Crinum asiaticum var.sinicum , Crinum jagus, Crinum moorei, Cyrtanthus falcatus, Cyrtanthus obliquus , Galanthus caucasicus , Galanthus elwesii, Galanthus nivalis , Haemanthus albiflos, Hippeastrum equestre, Hippeastrum morelianum, Hippeastrum puniceum, Hippeastrum vittatum L.'Herr., Hymenocallis arenicola Northrop H, Hymenocallis cayamansis, Hymenocallis littoralis , Hymenocallis rotata, Hymenocallis x festalis, Lapiedra martinezii, Leucojum aestivum L. , Leucojum vernum, Lycoris aurea , Lycoris radiata , Lycoris sanguinea, Lycoris sanguinea Maxim, Lycoris squamigera, Narcissus asturiensis, Narcissus bujei, Narcissus cantabricus, Narcissus cyclamineus, Narcissus folli, Narcissus jonquilla, Narcissus papyraceus Kerl-Gawl, Narcissus poeticus L., Narcissus pseudonarcissus, Narcissus tarzettus, Narcissus tazetta L. , Pancratium biflorum Roxb., Pancratium canariense, Pancratium maritimum, Pancratium trianthum, Sprekelia formosissima, Sternbergia lutea, Sternbergia lutea ker-Gawl, Ungernia sewerzowii, Ungernia spiralis, Ungernia trisphaera, Ungernia vvedenskyi, Zephyranthes candida and Zephyranthes sulphurea. (+)-Tazettine was first documented in 2021 (PMID: 33434626). Based on a literature review a small amount of articles have been published on tazettine (PMID: 35483192) (PMID: 35448871) (PMID: 33578992) (PMID: 33401696). |
|---|
| Structure | CO[C@H]1C[C@@H]2N(C)C[C@@]3(O)OCC4=CC5=C(OCO5)C=C4[C@@]23C=C1 InChI=1S/C18H21NO5/c1-19-9-18(20)17(4-3-12(21-2)6-16(17)19)13-7-15-14(22-10-23-15)5-11(13)8-24-18/h3-5,7,12,16,20H,6,8-10H2,1-2H3/t12-,16+,17+,18-/m1/s1 |
|---|
| Synonyms | | Value | Source |
|---|
| Sekisanin | ChEBI | | Sekisanolin | ChEBI | | Sekisanoline | ChEBI | | Ungernine | ChEBI |
|
|---|
| Chemical Formula | C18H21NO5 |
|---|
| Average Mass | 331.3680 Da |
|---|
| Monoisotopic Mass | 331.14197 Da |
|---|
| IUPAC Name | (1S,13S,16S,18S)-18-methoxy-15-methyl-5,7,12-trioxa-15-azapentacyclo[11.7.0.0^{1,16}.0^{2,10}.0^{4,8}]icosa-2,4(8),9,19-tetraen-13-ol |
|---|
| Traditional Name | (1S,13S,16S,18S)-18-methoxy-15-methyl-5,7,12-trioxa-15-azapentacyclo[11.7.0.0^{1,16}.0^{2,10}.0^{4,8}]icosa-2,4(8),9,19-tetraen-13-ol |
|---|
| CAS Registry Number | Not Available |
|---|
| SMILES | CO[C@H]1C[C@@H]2N(C)C[C@@]3(O)OCC4=CC5=C(OCO5)C=C4[C@@]23C=C1 |
|---|
| InChI Identifier | InChI=1S/C18H21NO5/c1-19-9-18(20)17(4-3-12(21-2)6-16(17)19)13-7-15-14(22-10-23-15)5-11(13)8-24-18/h3-5,7,12,16,20H,6,8-10H2,1-2H3/t12-,16+,17+,18-/m1/s1 |
|---|
| InChI Key | YLWAQARRNQVEHD-PBZHRCKQSA-N |
|---|
| Experimental Spectra |
|---|
|
| Not Available | | Predicted Spectra |
|---|
|
| | Spectrum Type | Description | Depositor ID | Depositor Organization | Depositor | Deposition Date | View |
|---|
| 1D NMR | 13C NMR Spectrum (1D, 25 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 100 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 252 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 1000 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 50 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 200 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 75 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 300 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 101 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 400 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 126 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 500 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 151 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 600 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 176 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 700 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 201 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 800 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 226 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 900 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum |
| | Chemical Shift Submissions |
|---|
|
| Not Available | | Species |
|---|
| Species of Origin | |
|---|
| Chemical Taxonomy |
|---|
| Description | Belongs to the class of organic compounds known as tazettine-type amaryllidaceae alkaloids. These are amaryllidaceae alkaloids derived from the haemanthamine-type alkaloids, which are characterized as a linkage between C6 and C11 by an oxygen atom to form a [3,4-g]benzopyran framework. |
|---|
| Kingdom | Organic compounds |
|---|
| Super Class | Alkaloids and derivatives |
|---|
| Class | Amaryllidaceae alkaloids |
|---|
| Sub Class | Tazettine-type amaryllidaceae alkaloids |
|---|
| Direct Parent | Tazettine-type amaryllidaceae alkaloids |
|---|
| Alternative Parents | |
|---|
| Substituents | - Tazettine alkaloid skeleton
- Benzopyran
- Isochromane
- 2-benzopyran
- Benzodioxole
- Indole or derivatives
- Aralkylamine
- N-alkylpyrrolidine
- Benzenoid
- Pyrrolidine
- Hemiacetal
- Tertiary amine
- Tertiary aliphatic amine
- Oxacycle
- Acetal
- Ether
- Dialkyl ether
- Azacycle
- Organoheterocyclic compound
- Amine
- Organooxygen compound
- Organonitrogen compound
- Hydrocarbon derivative
- Organopnictogen compound
- Organic oxygen compound
- Organic nitrogen compound
- Aromatic heteropolycyclic compound
|
|---|
| Molecular Framework | Aromatic heteropolycyclic compounds |
|---|
| External Descriptors | |
|---|
| Physical Properties |
|---|
| State | Not Available |
|---|
| Experimental Properties | | Property | Value | Reference |
|---|
| Melting Point | Not Available | Not Available | | Boiling Point | Not Available | Not Available | | Water Solubility | Not Available | Not Available | | LogP | Not Available | Not Available |
|
|---|
| Predicted Properties | |
|---|
| General References | - Aleya F, Xianmin C, Anthony H, Meriel J: Relative expression of putative genes involved in galanthamine and other Amaryllidaceae alkaloids biosynthesis in Narcissus field and in vitro tissues. Gene. 2021 Mar 30;774:145424. doi: 10.1016/j.gene.2021.145424. Epub 2021 Jan 9. [PubMed:33434626 ]
- Sierra K, de Andrade JP, R Tallini L, Osorio EH, Yanez O, Osorio MI, Oleas NH, Garcia-Beltran O, de S Borges W, Bastida J, Osorio E, Cortes N: In vitro and in silico analysis of galanthine from Zephyranthes carinata as an inhibitor of acetylcholinesterase. Biomed Pharmacother. 2022 Jun;150:113016. doi: 10.1016/j.biopha.2022.113016. Epub 2022 Apr 25. [PubMed:35483192 ]
- Masi M, Di Lecce R, Merindol N, Girard MP, Berthoux L, Desgagne-Penix I, Calabro V, Evidente A: Cytotoxicity and Antiviral Properties of Alkaloids Isolated from Pancratium maritimum. Toxins (Basel). 2022 Apr 7;14(4). pii: toxins14040262. doi: 10.3390/toxins14040262. [PubMed:35448871 ]
- Spina R, Saliba S, Dupire F, Ptak A, Hehn A, Piutti S, Poinsignon S, Leclerc S, Bouguet-Bonnet S, Laurain-Mattar D: Molecular Identification of Endophytic Bacteria in Leucojum aestivum In Vitro Culture, NMR-Based Metabolomics Study and LC-MS Analysis Leading to Potential Amaryllidaceae Alkaloid Production. Int J Mol Sci. 2021 Feb 10;22(4). pii: ijms22041773. doi: 10.3390/ijms22041773. [PubMed:33578992 ]
- Zaragoza-Puchol D, Ortiz JE, Orden AA, Sanchez M, Palermo J, Tapia A, Bastida J, Feresin GE: Alkaloids Analysis of Habranthus cardenasianus (Amaryllidaceae), Anti-Cholinesterase Activity and Biomass Production by Propagation Strategies. Molecules. 2021 Jan 2;26(1). pii: molecules26010192. doi: 10.3390/molecules26010192. [PubMed:33401696 ]
|
|---|