| Record Information |
|---|
| Version | 2.0 |
|---|
| Created at | 2022-04-28 07:56:43 UTC |
|---|
| Updated at | 2022-04-28 07:56:43 UTC |
|---|
| NP-MRD ID | NP0063560 |
|---|
| Secondary Accession Numbers | None |
|---|
| Natural Product Identification |
|---|
| Common Name | Kessane |
|---|
| Description | Kessane belongs to the class of organic compounds known as oxepanes. Oxepanes are compounds containing an oxepane ring, which is a seven-member saturated aliphatic heterocycle with one oxygen and six carbon atoms. Kessane is found in Acacia nuperrima, Bothriochloa bladhii, Geigeria aspera, Heracleum dissectum, Olearia phlogopappa, Petasites albus , Petasites hybridus , Primula halleri, Valeriana fauriei and Valeriana officinalis . Kessane was first documented in 2017 (PMID: 29129053). Based on a literature review a small amount of articles have been published on Kessane (PMID: 33202983) (PMID: 31030559) (PMID: 29117116) (PMID: 28467692). |
|---|
| Structure | C[C@@H]1CC[C@@H]2[C@@H]1C[C@H]1CC[C@]2(C)OC1(C)C InChI=1S/C15H26O/c1-10-5-6-13-12(10)9-11-7-8-15(13,4)16-14(11,2)3/h10-13H,5-9H2,1-4H3/t10-,11-,12-,13-,15+/m1/s1 |
|---|
| Synonyms | Not Available |
|---|
| Chemical Formula | C15H26O |
|---|
| Average Mass | 222.3720 Da |
|---|
| Monoisotopic Mass | 222.19837 Da |
|---|
| IUPAC Name | (1S,2R,5R,6R,8R)-1,5,9,9-tetramethyl-10-oxatricyclo[6.2.2.0^{2,6}]dodecane |
|---|
| Traditional Name | (1S,2R,5R,6R,8R)-1,5,9,9-tetramethyl-10-oxatricyclo[6.2.2.0^{2,6}]dodecane |
|---|
| CAS Registry Number | Not Available |
|---|
| SMILES | C[C@@H]1CC[C@@H]2[C@@H]1C[C@H]1CC[C@]2(C)OC1(C)C |
|---|
| InChI Identifier | InChI=1S/C15H26O/c1-10-5-6-13-12(10)9-11-7-8-15(13,4)16-14(11,2)3/h10-13H,5-9H2,1-4H3/t10-,11-,12-,13-,15+/m1/s1 |
|---|
| InChI Key | QRVMFXFSGYDNJI-HVNMYJMUSA-N |
|---|
| Experimental Spectra |
|---|
|
| Not Available | | Predicted Spectra |
|---|
|
| | Spectrum Type | Description | Depositor ID | Depositor Organization | Depositor | Deposition Date | View |
|---|
| 1D NMR | 13C NMR Spectrum (1D, 25 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 100 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 252 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 1000 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 50 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 200 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 75 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 300 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 101 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 400 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 126 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 500 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 151 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 600 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 176 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 700 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 201 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 800 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 226 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 900 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum |
| | Chemical Shift Submissions |
|---|
|
| Not Available | | Species |
|---|
| Species of Origin | |
|---|
| Chemical Taxonomy |
|---|
| Description | Belongs to the class of organic compounds known as oxepanes. Oxepanes are compounds containing an oxepane ring, which is a seven-member saturated aliphatic heterocycle with one oxygen and six carbon atoms. |
|---|
| Kingdom | Organic compounds |
|---|
| Super Class | Organoheterocyclic compounds |
|---|
| Class | Oxepanes |
|---|
| Sub Class | Not Available |
|---|
| Direct Parent | Oxepanes |
|---|
| Alternative Parents | |
|---|
| Substituents | - Oxepane
- Oxane
- Oxacycle
- Ether
- Dialkyl ether
- Organic oxygen compound
- Hydrocarbon derivative
- Organooxygen compound
- Aliphatic heteropolycyclic compound
|
|---|
| Molecular Framework | Aliphatic heteropolycyclic compounds |
|---|
| External Descriptors | Not Available |
|---|
| Physical Properties |
|---|
| State | Not Available |
|---|
| Experimental Properties | | Property | Value | Reference |
|---|
| Melting Point | Not Available | Not Available | | Boiling Point | Not Available | Not Available | | Water Solubility | Not Available | Not Available | | LogP | Not Available | Not Available |
|
|---|
| Predicted Properties | |
|---|
| General References | - Sadgrove NJ, Padilla-Gonzalez GF, Telford IRH, Greatrex BW, Jones GL, Andrew R, Bruhl JJ, Langat MK, Melnikovova I, Fernandez-Cusimamani E: Prostanthera (Lamiaceae) as a 'Cradle of Incense': Chemophenetics of Rare Essential Oils from Both New and Forgotten Australian 'Mint Bush' Species. Plants (Basel). 2020 Nov 13;9(11). pii: plants9111570. doi: 10.3390/plants9111570. [PubMed:33202983 ]
- Dong FW, Li F, Ren JJ, Zhao CM, Diao HL, Li BJ, Li YP, Hu JM, He HP: Sesquiterpenoids from the roots and rhizomes of Valeriana amurensis and their effects on NGF-induced neurite outgrowth in PC12 cells. Nat Prod Res. 2021 Mar;35(5):757-762. doi: 10.1080/14786419.2019.1603223. Epub 2019 Apr 29. [PubMed:31030559 ]
- Mileski KS, Trifunovic SS, Ciric AD, Sakic ZM, Ristic MS, Todorovic NM, Matevski VS, Marin PD, Tesevic VV, Dzamic AM: Research on Chemical Composition and Biological Properties Including Antiquorum Sensing Activity of Angelica pancicii Vandas Aerial Parts and Roots. J Agric Food Chem. 2017 Dec 20;65(50):10933-10949. doi: 10.1021/acs.jafc.7b04202. Epub 2017 Dec 8. [PubMed:29129053 ]
- Parki A, Chaubey P, Prakash O, Kumar R, Pant AK: Seasonal Variation in Essential Oil Compositions and Antioxidant Properties of Acorus calamus L. Accessions. Medicines (Basel). 2017 Nov 8;4(4). pii: medicines4040081. doi: 10.3390/medicines4040081. [PubMed:29117116 ]
- Chaib F, Allali H, Bennaceur M, Flamini G: Chemical Composition and Antimicrobial Activity of Essential Oils from the Aerial Parts of Asteriscus graveolens (Forssk.) Less. and Pulicaria incisa (Lam.) DC.: Two Asteraceae Herbs Growing Wild in the Hoggar. Chem Biodivers. 2017 Aug;14(8). doi: 10.1002/cbdv.201700092. Epub 2017 Jul 1. [PubMed:28467692 ]
|
|---|