| Record Information |
|---|
| Version | 2.0 |
|---|
| Created at | 2022-04-28 06:54:32 UTC |
|---|
| Updated at | 2022-04-28 06:54:32 UTC |
|---|
| NP-MRD ID | NP0062240 |
|---|
| Secondary Accession Numbers | None |
|---|
| Natural Product Identification |
|---|
| Common Name | (-)-Terreic acid |
|---|
| Description | Terreic acid, also known as terreate or versilin, belongs to the class of organic compounds known as cyclohexenones. Cyclohexenones are compounds containing a cylohexenone moiety, which is a six-membered aliphatic ring that carries a ketone and has one endocyclic double bond. (-)-Terreic acid is found in Aspergillus flavipes and Aspergillus terreus 5378 . (-)-Terreic acid was first documented in 2016 (PMID: 27455860). Based on a literature review a small amount of articles have been published on Terreic acid (PMID: 29391515) (PMID: 29251283) (PMID: 29186697) (PMID: 26762501). |
|---|
| Structure | CC1=C(O)C(=O)[C@@H]2O[C@@H]2C1=O InChI=1S/C7H6O4/c1-2-3(8)5(10)7-6(11-7)4(2)9/h6-8H,1H3/t6-,7+/m1/s1 |
|---|
| Synonyms | | Value | Source |
|---|
| Terreate | Generator | | Terreic acid, (+-)-isomer | MeSH | | Terreic acid, (1S)-isomer | MeSH | | Versilin | MeSH |
|
|---|
| Chemical Formula | C7H6O4 |
|---|
| Average Mass | 154.1210 Da |
|---|
| Monoisotopic Mass | 154.02661 Da |
|---|
| IUPAC Name | (1R,6S)-3-hydroxy-4-methyl-7-oxabicyclo[4.1.0]hept-3-ene-2,5-dione |
|---|
| Traditional Name | (1R,6S)-3-hydroxy-4-methyl-7-oxabicyclo[4.1.0]hept-3-ene-2,5-dione |
|---|
| CAS Registry Number | Not Available |
|---|
| SMILES | CC1=C(O)C(=O)[C@@H]2O[C@@H]2C1=O |
|---|
| InChI Identifier | InChI=1S/C7H6O4/c1-2-3(8)5(10)7-6(11-7)4(2)9/h6-8H,1H3/t6-,7+/m1/s1 |
|---|
| InChI Key | ATFNSNUJZOYXFC-RQJHMYQMSA-N |
|---|
| Experimental Spectra |
|---|
|
| Not Available | | Predicted Spectra |
|---|
|
| | Spectrum Type | Description | Depositor ID | Depositor Organization | Depositor | Deposition Date | View |
|---|
| 1D NMR | 13C NMR Spectrum (1D, 25 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 100 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 252 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 1000 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 50 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 200 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 75 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 300 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 101 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 400 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 126 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 500 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 151 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 600 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 176 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 700 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 201 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 800 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 226 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 900 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum |
| | Chemical Shift Submissions |
|---|
|
| Not Available | | Species |
|---|
| Species of Origin | |
|---|
| Chemical Taxonomy |
|---|
| Description | Belongs to the class of organic compounds known as cyclohexenones. Cyclohexenones are compounds containing a cylohexenone moiety, which is a six-membered aliphatic ring that carries a ketone and has one endocyclic double bond. |
|---|
| Kingdom | Organic compounds |
|---|
| Super Class | Organic oxygen compounds |
|---|
| Class | Organooxygen compounds |
|---|
| Sub Class | Carbonyl compounds |
|---|
| Direct Parent | Cyclohexenones |
|---|
| Alternative Parents | |
|---|
| Substituents | - Cyclohexenone
- Vinylogous acid
- Oxacycle
- Organoheterocyclic compound
- Ether
- Oxirane
- Enol
- Dialkyl ether
- Organic oxide
- Hydrocarbon derivative
- Aliphatic heteropolycyclic compound
|
|---|
| Molecular Framework | Aliphatic heteropolycyclic compounds |
|---|
| External Descriptors | Not Available |
|---|
| Physical Properties |
|---|
| State | Not Available |
|---|
| Experimental Properties | | Property | Value | Reference |
|---|
| Melting Point | Not Available | Not Available | | Boiling Point | Not Available | Not Available | | Water Solubility | Not Available | Not Available | | LogP | Not Available | Not Available |
|
|---|
| Predicted Properties | |
|---|
| General References | - Kong C, Huang H, Xue Y, Liu Y, Peng Q, Liu Q, Xu Q, Zhu Q, Yin Y, Zhou X, Zhang Y, Cai M: Heterologous pathway assembly reveals molecular steps of fungal terreic acid biosynthesis. Sci Rep. 2018 Feb 1;8(1):2116. doi: 10.1038/s41598-018-20514-x. [PubMed:29391515 ]
- Ferguson LB, Ozburn AR, Ponomarev I, Metten P, Reilly M, Crabbe JC, Harris RA, Mayfield RD: Genome-Wide Expression Profiles Drive Discovery of Novel Compounds that Reduce Binge Drinking in Mice. Neuropsychopharmacology. 2018 May;43(6):1257-1266. doi: 10.1038/npp.2017.301. Epub 2017 Dec 18. [PubMed:29251283 ]
- Sarnoski EA, Liu P, Acar M: A High-Throughput Screen for Yeast Replicative Lifespan Identifies Lifespan-Extending Compounds. Cell Rep. 2017 Nov 28;21(9):2639-2646. doi: 10.1016/j.celrep.2017.11.002. [PubMed:29186697 ]
- Yin Y, Cai M, Zhou X, Li Z, Zhang Y: Polyketides in Aspergillus terreus: biosynthesis pathway discovery and application. Appl Microbiol Biotechnol. 2016 Sep;100(18):7787-98. doi: 10.1007/s00253-016-7733-z. Epub 2016 Jul 26. [PubMed:27455860 ]
- Sharma R, Lambu MR, Jamwal U, Rani C, Chib R, Wazir P, Mukherjee D, Chaubey A, Khan IA: Escherichia coli N-Acetylglucosamine-1-Phosphate-Uridyltransferase/Glucosamine-1-Phosphate-Acetylt ransferase (GlmU) Inhibitory Activity of Terreic Acid Isolated from Aspergillus terreus. J Biomol Screen. 2016 Apr;21(4):342-53. doi: 10.1177/1087057115625308. Epub 2016 Jan 13. [PubMed:26762501 ]
|
|---|