Np mrd loader

Record Information
Version2.0
Created at2022-04-28 04:36:46 UTC
Updated at2022-04-28 04:36:46 UTC
NP-MRD IDNP0059354
Secondary Accession NumbersNone
Natural Product Identification
Common Name[4aS-(4aalpha,8abeta,9abeta)]-4a,5,6,7,8,8a,9,9a-Octahydro-3,8a-dimethyl-5-methylenenaphtho[2,3-b]furan-2(4H)-one
DescriptionAtractylenolide II belongs to the class of organic compounds known as eudesmanolides, secoeudesmanolides, and derivatives. These are terpenoids with a structure based on the eudesmanolide (a 3,5a,9-trimethyl-naphtho[1,2-b]furan-2-one derivative) or secoeudesmanolide (a 3,6-dimethyl-5-(pentan-2-yl)-1-benzofuran-2-one derivative) skeleton. [4aS-(4aalpha,8abeta,9abeta)]-4a,5,6,7,8,8a,9,9a-Octahydro-3,8a-dimethyl-5-methylenenaphtho[2,3-b]furan-2(4H)-one is found in Aster japonica, Aster umbellatus, Atractylodes lancea, Atractylodes macrocephala, Chloranthus henryi, Codonopsis pilosula and Sarcandra glabra. [4aS-(4aalpha,8abeta,9abeta)]-4a,5,6,7,8,8a,9,9a-Octahydro-3,8a-dimethyl-5-methylenenaphtho[2,3-b]furan-2(4H)-one was first documented in 2018 (PMID: 30545141). Based on a literature review a significant number of articles have been published on Atractylenolide II (PMID: 35371119) (PMID: 35166628) (PMID: 34799321) (PMID: 32455222) (PMID: 32360309) (PMID: 30907503).
Structure
Thumb
SynonymsNot Available
Chemical FormulaC15H20O2
Average Mass232.3230 Da
Monoisotopic Mass232.14633 Da
IUPAC Name(4aS,8aR,9aS)-3,8a-dimethyl-5-methylidene-2H,4H,4aH,5H,6H,7H,8H,8aH,9H,9aH-naphtho[2,3-b]furan-2-one
Traditional Name(4aS,8aR,9aS)-3,8a-dimethyl-5-methylidene-4H,4aH,6H,7H,8H,9H,9aH-naphtho[2,3-b]furan-2-one
CAS Registry NumberNot Available
SMILES
CC1=C2C[C@H]3C(=C)CCC[C@]3(C)C[C@@H]2OC1=O
InChI Identifier
InChI=1S/C15H20O2/c1-9-5-4-6-15(3)8-13-11(7-12(9)15)10(2)14(16)17-13/h12-13H,1,4-8H2,2-3H3/t12-,13-,15+/m0/s1
InChI KeyOQYBLUDOOFOBPO-KCQAQPDRSA-N
Experimental Spectra
Not Available
Predicted Spectra
Spectrum TypeDescriptionDepositor IDDepositor OrganizationDepositorDeposition DateView
1D NMR13C NMR Spectrum (1D, 25 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 100 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 252 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 1000 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 50 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 200 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 75 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 300 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 101 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 400 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 126 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 500 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 151 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 600 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 176 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 700 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 201 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 800 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 226 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 900 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
Chemical Shift Submissions
Not Available
Species
Species of Origin
Species NameSourceReference
Aster japonicaPlant
Aster umbellatusPlant
Atractylodes lanceaLOTUS Database
Atractylodes macrocephalaLOTUS Database
Chloranthus henryiLOTUS Database
Codonopsis pilosulaLOTUS Database
Sarcandra glabraLOTUS Database
Chemical Taxonomy
Description Belongs to the class of organic compounds known as eudesmanolides, secoeudesmanolides, and derivatives. These are terpenoids with a structure based on the eudesmanolide (a 3,5a,9-trimethyl-naphtho[1,2-b]furan-2-one derivative) or secoeudesmanolide (a 3,6-dimethyl-5-(pentan-2-yl)-1-benzofuran-2-one derivative) skeleton.
KingdomOrganic compounds
Super ClassLipids and lipid-like molecules
ClassPrenol lipids
Sub ClassTerpene lactones
Direct ParentEudesmanolides, secoeudesmanolides, and derivatives
Alternative Parents
Substituents
  • Eudesmanolide
  • Sesquiterpenoid
  • Naphthofuran
  • 2-furanone
  • Dihydrofuran
  • Enoate ester
  • Alpha,beta-unsaturated carboxylic ester
  • Lactone
  • Carboxylic acid ester
  • Oxacycle
  • Monocarboxylic acid or derivatives
  • Carboxylic acid derivative
  • Organoheterocyclic compound
  • Organooxygen compound
  • Hydrocarbon derivative
  • Organic oxide
  • Organic oxygen compound
  • Carbonyl group
  • Aliphatic heteropolycyclic compound
Molecular FrameworkAliphatic heteropolycyclic compounds
External DescriptorsNot Available
Physical Properties
StateNot Available
Experimental Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Predicted Properties
PropertyValueSource
logP3.49ALOGPS
logP3.33ChemAxon
logS-3.2ALOGPS
pKa (Strongest Acidic)13.41ChemAxon
pKa (Strongest Basic)-6.9ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count1ChemAxon
Hydrogen Donor Count0ChemAxon
Polar Surface Area26.3 ŲChemAxon
Rotatable Bond Count0ChemAxon
Refractivity66.93 m³·mol⁻¹ChemAxon
Polarizability26.47 ųChemAxon
Number of Rings3ChemAxon
BioavailabilityYesChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleNoChemAxon
HMDB IDNot Available
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FoodDB IDNot Available
KNApSAcK IDC00012887
Chemspider ID23326813
KEGG Compound IDC17886
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkNot Available
METLIN IDNot Available
PubChem Compound14448070
PDB IDNot Available
ChEBI IDNot Available
Good Scents IDNot Available
References
General References
  1. Sun J, Luo H, Jiang Y, Wang L, Xiao C, Weng L: Influence of Nutrient (NPK) Factors on Growth, and Pharmacodynamic Component Biosynthesis of Atractylodes chinensis: An Insight on Acetyl-CoA Carboxylase (ACC), 3-Hydroxy-3-Methylglutaryl-CoA Reductase (HMGR), and Farnesyl Pyrophosphate Synthase (FPPS) Signaling Responses. Front Plant Sci. 2022 Mar 18;13:799201. doi: 10.3389/fpls.2022.799201. eCollection 2022. [PubMed:35371119 ]
  2. Zhang Y, Liu Y, Wang J, Jiang Z, Zhang L, Cui Y, Zhao D, Wang Y: Atractylenolide II inhibits tumor-associated macrophages (TAMs)-induced lung cancer cell metastasis. Immunopharmacol Immunotoxicol. 2022 Apr;44(2):227-237. doi: 10.1080/08923973.2022.2037629. Epub 2022 Feb 15. [PubMed:35166628 ]
  3. Dou S, Yang C, Zou D, Da W, Masood M, Adlat S, Baima YJ, Nasser MI, Li B, Jiang N: Atractylenolide II induces cell cycle arrest and apoptosis in breast cancer cells through ER pathway. Pak J Pharm Sci. 2021 Jul;34(4):1449-1458. [PubMed:34799321 ]
  4. Fu C, Liu M, Li Y, Wang K, Yang B, Deng L, Tian J, Yang G, Zheng G: UPLC-Q-Exactive Orbitrap MS Analysis for Identification of Lipophilic Components in Citri Sarcodactylis Fructus from Different Origins in China Using Supercritical CO2 Fluid Extraction Method. ACS Omega. 2020 May 8;5(19):11013-11023. doi: 10.1021/acsomega.0c00854. eCollection 2020 May 19. [PubMed:32455222 ]
  5. Xiao C, Xu C, He N, Liu Y, Wang Y, Zhang M, Ji K, Du L, Wang J, Wang Q, Liu Q: Atractylenolide II prevents radiation damage via MAPKp38/Nrf2 signaling pathway. Biochem Pharmacol. 2020 Jul;177:114007. doi: 10.1016/j.bcp.2020.114007. Epub 2020 Apr 30. [PubMed:32360309 ]
  6. Zhang R, Wang Z, Yu Q, Shen J, He W, Zhou D, Yu Q, Fan J, Gao S, Duan L: Atractylenolide II reverses the influence of lncRNA XIST/miR-30a-5p/ROR1 axis on chemo-resistance of colorectal cancer cells. J Cell Mol Med. 2019 May;23(5):3151-3165. doi: 10.1111/jcmm.14148. Epub 2019 Mar 25. [PubMed:30907503 ]
  7. Wang J, Nasser MI, Adlat S, Ming Jiang M, Jiang N, Gao L: Atractylenolide II Induces Apoptosis of Prostate Cancer Cells through Regulation of AR and JAK2/STAT3 Signaling Pathways. Molecules. 2018 Dec 12;23(12). pii: molecules23123298. doi: 10.3390/molecules23123298. [PubMed:30545141 ]
  8. Xu S, Qi X, Liu Y, Liu Y, Lv X, Sun J, Cai Q: UPLC-MS/MS of Atractylenolide I, Atractylenolide II, Atractylenolide III, and Atractyloside A in Rat Plasma after Oral Administration of Raw and Wheat Bran-Processed Atractylodis Rhizoma. Molecules. 2018 Dec 7;23(12). pii: molecules23123234. doi: 10.3390/molecules23123234. [PubMed:30544552 ]