Np mrd loader

Record Information
Version2.0
Created at2022-04-28 01:05:29 UTC
Updated at2022-04-28 01:05:29 UTC
NP-MRD IDNP0054880
Secondary Accession NumbersNone
Natural Product Identification
Common Name(+)-Taxiresinol
DescriptionTaxiresinol belongs to the class of organic compounds known as 7,9'-epoxylignans. These are lignans that contain the 7,9'-epoxylignan skeleton, which consists of a tetrahydrofuran that carries a phenyl group, a methyl group, and a benzyl group at the 2-, 3-, 4-position, respectively. Taxiresinol is a secondary metabolite. Secondary metabolites are metabolically or physiologically non-essential metabolites that may serve a role as defense or signalling molecules. In some cases they are simply molecules that arise from the incomplete metabolism of other secondary metabolites. (+)-Taxiresinol is found in Daphne oleoides, Daphne oleoides spp. , Taxus baccata , Taxus cuspidata , Taxus mairei and Taxus wallichiana . (+)-Taxiresinol was first documented in 2003 (PMID: 14611890). Based on a literature review a significant number of articles have been published on taxiresinol (PMID: 21138310) (PMID: 25856716) (PMID: 22210027) (PMID: 21544613) (PMID: 20469636) (PMID: 19124280).
Structure
Thumb
SynonymsNot Available
Chemical FormulaC19H22O6
Average Mass346.3790 Da
Monoisotopic Mass346.14164 Da
IUPAC Name4-[(2S,3R,4R)-4-[(4-hydroxy-3-methoxyphenyl)methyl]-3-(hydroxymethyl)oxolan-2-yl]benzene-1,2-diol
Traditional Name4-[(2S,3R,4R)-4-[(4-hydroxy-3-methoxyphenyl)methyl]-3-(hydroxymethyl)oxolan-2-yl]benzene-1,2-diol
CAS Registry NumberNot Available
SMILES
COC1=CC(C[C@H]2CO[C@@H]([C@H]2CO)C2=CC(O)=C(O)C=C2)=CC=C1O
InChI Identifier
InChI=1S/C19H22O6/c1-24-18-7-11(2-4-16(18)22)6-13-10-25-19(14(13)9-20)12-3-5-15(21)17(23)8-12/h2-5,7-8,13-14,19-23H,6,9-10H2,1H3/t13-,14-,19+/m0/s1
InChI KeySNZZAHRDXCGWEM-CKFHNAJUSA-N
Experimental Spectra
Not Available
Predicted Spectra
Spectrum TypeDescriptionDepositor IDDepositor OrganizationDepositorDeposition DateView
1D NMR13C NMR Spectrum (1D, 25 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 100 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 252 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 1000 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 50 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 200 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 75 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 300 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 101 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 400 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 126 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 500 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 151 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 600 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 176 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 700 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 201 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 800 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 226 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 900 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
Chemical Shift Submissions
Not Available
Species
Species of Origin
Species NameSourceReference
Daphne oleoidesLOTUS Database
Daphne oleoides spp.Plant
Taxus baccataPlant
Taxus cuspidataPlant
Taxus maireiPlant
Taxus wallichianaPlant
Chemical Taxonomy
Description Belongs to the class of organic compounds known as 7,9'-epoxylignans. These are lignans that contain the 7,9'-epoxylignan skeleton, which consists of a tetrahydrofuran that carries a phenyl group, a methyl group, and a benzyl group at the 2-, 3-, 4-position, respectively.
KingdomOrganic compounds
Super ClassLignans, neolignans and related compounds
ClassFuranoid lignans
Sub ClassTetrahydrofuran lignans
Direct Parent7,9'-epoxylignans
Alternative Parents
Substituents
  • 7,9p-epoxylignan
  • Methoxyphenol
  • Phenoxy compound
  • Anisole
  • Methoxybenzene
  • Catechol
  • Phenol ether
  • 1-hydroxy-4-unsubstituted benzenoid
  • 1-hydroxy-2-unsubstituted benzenoid
  • Alkyl aryl ether
  • Phenol
  • Monocyclic benzene moiety
  • Benzenoid
  • Tetrahydrofuran
  • Oxacycle
  • Organoheterocyclic compound
  • Dialkyl ether
  • Ether
  • Organic oxygen compound
  • Alcohol
  • Hydrocarbon derivative
  • Primary alcohol
  • Organooxygen compound
  • Aromatic heteromonocyclic compound
Molecular FrameworkAromatic heteromonocyclic compounds
External Descriptors
Physical Properties
StateNot Available
Experimental Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Predicted Properties
PropertyValueSource
logP1.8ALOGPS
logP2.16ChemAxon
logS-4ALOGPS
pKa (Strongest Acidic)9.18ChemAxon
pKa (Strongest Basic)-2.6ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count6ChemAxon
Hydrogen Donor Count4ChemAxon
Polar Surface Area99.38 ŲChemAxon
Rotatable Bond Count5ChemAxon
Refractivity92.71 m³·mol⁻¹ChemAxon
Polarizability36.52 ųChemAxon
Number of Rings3ChemAxon
BioavailabilityYesChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleNoChemAxon
MDDR-like RuleNoChemAxon
HMDB IDNot Available
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FoodDB IDNot Available
KNApSAcK IDC00007200
Chemspider ID8264500
KEGG Compound IDNot Available
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkNot Available
METLIN IDNot Available
PubChem Compound10088963
PDB IDNot Available
ChEBI ID70197
Good Scents IDNot Available
References
General References
  1. Tezuka Y, Morikawa K, Li F, Auw L, Awale S, Nobukawa T, Kadota S: Cytochrome P450 3A4 inhibitory constituents of the wood of Taxus yunnanensis. J Nat Prod. 2011 Jan 28;74(1):102-5. doi: 10.1021/np100665j. Epub 2010 Dec 7. [PubMed:21138310 ]
  2. Kupeli E, Erdemoglu N, Yesilada E, Sener B: Anti-inflammatory and antinociceptive activity of taxoids and lignans from the heartwood of Taxus baccata L. J Ethnopharmacol. 2003 Dec;89(2-3):265-70. doi: 10.1016/j.jep.2003.09.005. [PubMed:14611890 ]
  3. Ahmad I, Waheed A, Tahir NB, Rais AK: Anti-inflammatory constituents from Perovskia atriplicifolia. Pharm Biol. 2015;53(11):1628-31. doi: 10.3109/13880209.2014.997250. Epub 2015 Apr 9. [PubMed:25856716 ]
  4. Lee DG, Lee SM, Bang MH, Park HJ, Lee TH, Kim YH, Kim JY, Baek NI: Lignans from the flowers of Osmanthus fragrans var. aurantiacus and their inhibition effect on NO production. Arch Pharm Res. 2011 Dec;34(12):2029-35. doi: 10.1007/s12272-011-1204-y. Epub 2011 Dec 31. [PubMed:22210027 ]
  5. Bulgakov VP, Tchernoded GK, Veselova MV, Fedoreyev SA, Muzarok TI, Zhuravlev YN: Catechin production in cultured cells of Taxus cuspidata and Taxus baccata. Biotechnol Lett. 2011 Sep;33(9):1879-83. doi: 10.1007/s10529-011-0632-6. Epub 2011 May 5. [PubMed:21544613 ]
  6. Kucukboyaci N, Orhan I, Sener B, Nawaz SA, Choudhary MI: Assessment of enzyme inhibitory and antioxidant activities of lignans from Taxus baccata L. Z Naturforsch C J Biosci. 2010 Mar-Apr;65(3-4):187-94. doi: 10.1515/znc-2010-3-404. [PubMed:20469636 ]
  7. Koyama J, Takeuchi A, Tode C, Shimizu M, Morita I, Nobukawa M, Nobukawa M, Kobayashi N: Development of an LC-ESI-MS/MS method for the determination of histamine: application to the quantitative measurement of histamine degranulation by KU812 cells. J Chromatogr B Analyt Technol Biomed Life Sci. 2009 Jan 15;877(3):207-12. doi: 10.1016/j.jchromb.2008.12.012. Epub 2008 Dec 11. [PubMed:19124280 ]
  8. Koyama J, Morita I, Kobayashi N, Hirai K, Simamura E, Nobukawa T, Kadota S: Antiallergic activity of aqueous extracts and constituents of Taxus yunnanensis. Biol Pharm Bull. 2006 Nov;29(11):2310-2. doi: 10.1248/bpb.29.2310. [PubMed:17077536 ]
  9. Banskota AH, Nguyen NT, Tezuka Y, Nobukawa T, Kadota S: Hypoglycemic effects of the wood of Taxus yunnanensis on streptozotocin-induced diabetic rats and its active components. Phytomedicine. 2006 Jan;13(1-2):109-14. doi: 10.1016/j.phymed.2004.01.015. Epub 2005 Aug 15. [PubMed:16360940 ]
  10. Erdemoglu N, Sener B, Choudhary MI: Bioactivity of Lignans from Taxus baccata. Z Naturforsch C J Biosci. 2004 Jul-Aug;59(7-8):494-8. doi: 10.1515/znc-2004-7-807. [PubMed:15813367 ]
  11. Gurbuz I, Erdemoglu N, Yesilada E, Sener B: Anti-ulcerogenic lignans from Taxus baccata L. Z Naturforsch C J Biosci. 2004 Mar-Apr;59(3-4):233-6. doi: 10.1515/znc-2004-3-420. [PubMed:15241933 ]
  12. Nguyen NT, Banskota AH, Tezuka Y, Le Tran Q, Nobukawa T, Kurashige Y, Sasahara M, Kadota S: Hepatoprotective effect of taxiresinol and (7'R)-7'-hydroxylariciresinol on D-galactosamine and lipopolysaccharide-induced liver injury in mice. Planta Med. 2004 Jan;70(1):29-33. doi: 10.1055/s-2004-815451. [PubMed:14765289 ]
  13. Chattopadhyay SK, Kumar TR, Maulik PR, Srivastava S, Garg A, Sharon A, Negi AS, Khanuja SP: Absolute configuration and anticancer activity of taxiresinol and related lignans of Taxus wallichiana. Bioorg Med Chem. 2003 Nov 17;11(23):4945-8. doi: 10.1016/j.bmc.2003.09.010. [PubMed:14604656 ]