| Record Information |
|---|
| Version | 2.0 |
|---|
| Created at | 2022-04-28 00:55:25 UTC |
|---|
| Updated at | 2022-04-28 00:55:25 UTC |
|---|
| NP-MRD ID | NP0054631 |
|---|
| Secondary Accession Numbers | None |
|---|
| Natural Product Identification |
|---|
| Common Name | Echinatin |
|---|
| Description | Echinatin belongs to the class of organic compounds known as retrochalcones. These are a form of normal chalcones that are structurally distinguished by the lack of oxygen functionalities at the C2'- and C6'-positions. Thus, echinatin is considered to be a flavonoid. Echinatin is found in Bauhinia manca, Dracaena draco, Glycyrrhiza aspera, Glycyrrhiza echinata , Glycyrrhiza glabra , Glycyrrhiza glara, Glycyrrhiza inflata , Glycyrrhiza pallidiflora and Glycyrrhiza uralensis . Echinatin was first documented in 2021 (PMID: 34598043). Based on a literature review a small amount of articles have been published on Echinatin (PMID: 35178925) (PMID: 35082510) (PMID: 34576274) (PMID: 34527599). |
|---|
| Structure | COC1=C(\C=C\C(=O)C2=CC=C(O)C=C2)C=CC(O)=C1 InChI=1S/C16H14O4/c1-20-16-10-14(18)8-4-12(16)5-9-15(19)11-2-6-13(17)7-3-11/h2-10,17-18H,1H3/b9-5+ |
|---|
| Synonyms | Not Available |
|---|
| Chemical Formula | C16H14O4 |
|---|
| Average Mass | 270.2840 Da |
|---|
| Monoisotopic Mass | 270.08921 Da |
|---|
| IUPAC Name | (2E)-3-(4-hydroxy-2-methoxyphenyl)-1-(4-hydroxyphenyl)prop-2-en-1-one |
|---|
| Traditional Name | echinatin |
|---|
| CAS Registry Number | Not Available |
|---|
| SMILES | COC1=C(\C=C\C(=O)C2=CC=C(O)C=C2)C=CC(O)=C1 |
|---|
| InChI Identifier | InChI=1S/C16H14O4/c1-20-16-10-14(18)8-4-12(16)5-9-15(19)11-2-6-13(17)7-3-11/h2-10,17-18H,1H3/b9-5+ |
|---|
| InChI Key | QJKMIJNRNRLQSS-WEVVVXLNSA-N |
|---|
| Experimental Spectra |
|---|
|
| Not Available | | Predicted Spectra |
|---|
|
| | Spectrum Type | Description | Depositor ID | Depositor Organization | Depositor | Deposition Date | View |
|---|
| 1D NMR | 13C NMR Spectrum (1D, 25 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 100 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 252 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 1000 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 50 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 200 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 75 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 300 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 101 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 400 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 126 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 500 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 151 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 600 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 176 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 700 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 201 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 800 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 226 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 900 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum |
| | Chemical Shift Submissions |
|---|
|
| Not Available | | Species |
|---|
| Species of Origin | |
|---|
| Chemical Taxonomy |
|---|
| Description | Belongs to the class of organic compounds known as retrochalcones. These are a form of normal chalcones that are structurally distinguished by the lack of oxygen functionalities at the C2'- and C6'-positions. |
|---|
| Kingdom | Organic compounds |
|---|
| Super Class | Phenylpropanoids and polyketides |
|---|
| Class | Linear 1,3-diarylpropanoids |
|---|
| Sub Class | Chalcones and dihydrochalcones |
|---|
| Direct Parent | Retrochalcones |
|---|
| Alternative Parents | |
|---|
| Substituents | - Retrochalcone
- Cinnamylphenol
- Hydroxycinnamic acid or derivatives
- Methoxyphenol
- Phenoxy compound
- Anisole
- Methoxybenzene
- Benzoyl
- Aryl ketone
- Styrene
- Phenol ether
- 1-hydroxy-2-unsubstituted benzenoid
- Alkyl aryl ether
- Phenol
- Monocyclic benzene moiety
- Benzenoid
- Acryloyl-group
- Alpha,beta-unsaturated ketone
- Enone
- Ketone
- Ether
- Organic oxide
- Organic oxygen compound
- Hydrocarbon derivative
- Organooxygen compound
- Aromatic homomonocyclic compound
|
|---|
| Molecular Framework | Aromatic homomonocyclic compounds |
|---|
| External Descriptors | |
|---|
| Physical Properties |
|---|
| State | Not Available |
|---|
| Experimental Properties | | Property | Value | Reference |
|---|
| Melting Point | Not Available | Not Available | | Boiling Point | Not Available | Not Available | | Water Solubility | Not Available | Not Available | | LogP | Not Available | Not Available |
|
|---|
| Predicted Properties | |
|---|
| General References | - Wu YL, Wang XY, Zhang H, Chen YL, Zhang ML, Chen XF, Niu L, Li WX, Tang JF: [Study on alleviating effect of Glycyrrhizae Radix et Rhizoma on Psoraleae Fructus-induced liver injury based on network pharmacology and cell experiments]. Zhongguo Zhong Yao Za Zhi. 2022 Jan;47(1):176-187. doi: 10.19540/j.cnki.cjcmm.20211025.401. [PubMed:35178925 ]
- Wang Z, Xu G, Li Z, Xiao X, Tang J, Bai Z: NLRP3 Inflammasome Pharmacological Inhibitors in Glycyrrhiza for NLRP3-Driven Diseases Treatment: Extinguishing the Fire of Inflammation. J Inflamm Res. 2022 Jan 19;15:409-422. doi: 10.2147/JIR.S344071. eCollection 2022. [PubMed:35082510 ]
- Mittal A, Kakkar R: The antioxidant potential of retrochalcones isolated from liquorice root: A comparative DFT study. Phytochemistry. 2021 Dec;192:112964. doi: 10.1016/j.phytochem.2021.112964. Epub 2021 Sep 29. [PubMed:34598043 ]
- Xiao Y, Han F, Lee IS: Biotransformation of the Phenolic Constituents from Licorice and Cytotoxicity Evaluation of Their Metabolites. Int J Mol Sci. 2021 Sep 18;22(18). pii: ijms221810109. doi: 10.3390/ijms221810109. [PubMed:34576274 ]
- Hu Y, Liu M, Qin H, Lin H, An X, Shi Z, Song L, Yang X, Fan H, Tong Y: Artemether, Artesunate, Arteannuin B, Echinatin, Licochalcone B and Andrographolide Effectively Inhibit SARS-CoV-2 and Related Viruses In Vitro. Front Cell Infect Microbiol. 2021 Aug 30;11:680127. doi: 10.3389/fcimb.2021.680127. eCollection 2021. [PubMed:34527599 ]
|
|---|