| Record Information |
|---|
| Version | 2.0 |
|---|
| Created at | 2022-04-27 23:17:58 UTC |
|---|
| Updated at | 2022-04-27 23:17:58 UTC |
|---|
| NP-MRD ID | NP0052133 |
|---|
| Secondary Accession Numbers | None |
|---|
| Natural Product Identification |
|---|
| Common Name | Calotropin |
|---|
| Description | Calotropin, also known as pecilocerin a, belongs to the class of organic compounds known as cardenolide glycosides and derivatives. Cardenolide glycosides and derivatives are compounds containing a carbohydrate glycosidically bound to the cardenolide moiety. Thus, calotropin is considered to be a sterol. Calotropin is found in Asclepias curassavica L. , Gomphocarpus fruticosus, Asclepias linaria, Asclepias subulata, Asclepias vestita, Calotropis gigantea , Calotropis procera , Danaus plexippus, Gomphocarpus sinaicus and Thymus vulgaris. Calotropin was first documented in 2020 (PMID: 33841525). Based on a literature review a significant number of articles have been published on Calotropin (PMID: 33850021) (PMID: 33292137) (PMID: 34563976) (PMID: 34343190) (PMID: 33770827) (PMID: 32999172). |
|---|
| Structure | C[C@@H]1C[C@H](O)[C@]2(O)O[C@@H]3C[C@@]4(C=O)[C@@H](CC[C@@H]5[C@@H]4CC[C@]4(C)[C@H](CC[C@]54O)C4=CC(=O)OC4)C[C@H]3O[C@@H]2O1 InChI=1S/C29H40O9/c1-15-9-23(31)29(34)25(36-15)37-21-11-17-3-4-20-19(27(17,14-30)12-22(21)38-29)5-7-26(2)18(6-8-28(20,26)33)16-10-24(32)35-13-16/h10,14-15,17-23,25,31,33-34H,3-9,11-13H2,1-2H3/t15-,17+,18-,19+,20-,21-,22-,23+,25+,26-,27-,28+,29+/m1/s1 |
|---|
| Synonyms | | Value | Source |
|---|
| Pecilocerin a | MeSH | | Pekilocerin a | MeSH |
|
|---|
| Chemical Formula | C29H40O9 |
|---|
| Average Mass | 532.6300 Da |
|---|
| Monoisotopic Mass | 532.26723 Da |
|---|
| IUPAC Name | (1S,3R,5S,7R,9S,10S,12R,14R,15S,18R,19R,22S,23R)-9,10,22-trihydroxy-7,18-dimethyl-19-(5-oxo-2,5-dihydrofuran-3-yl)-4,6,11-trioxahexacyclo[12.11.0.0^{3,12}.0^{5,10}.0^{15,23}.0^{18,22}]pentacosane-14-carbaldehyde |
|---|
| Traditional Name | (1S,3R,5S,7R,9S,10S,12R,14R,15S,18R,19R,22S,23R)-9,10,22-trihydroxy-7,18-dimethyl-19-(5-oxo-2H-furan-3-yl)-4,6,11-trioxahexacyclo[12.11.0.0^{3,12}.0^{5,10}.0^{15,23}.0^{18,22}]pentacosane-14-carbaldehyde |
|---|
| CAS Registry Number | Not Available |
|---|
| SMILES | C[C@@H]1C[C@H](O)[C@]2(O)O[C@@H]3C[C@@]4(C=O)[C@@H](CC[C@@H]5[C@@H]4CC[C@]4(C)[C@H](CC[C@]54O)C4=CC(=O)OC4)C[C@H]3O[C@@H]2O1 |
|---|
| InChI Identifier | InChI=1S/C29H40O9/c1-15-9-23(31)29(34)25(36-15)37-21-11-17-3-4-20-19(27(17,14-30)12-22(21)38-29)5-7-26(2)18(6-8-28(20,26)33)16-10-24(32)35-13-16/h10,14-15,17-23,25,31,33-34H,3-9,11-13H2,1-2H3/t15-,17+,18-,19+,20-,21-,22-,23+,25+,26-,27-,28+,29+/m1/s1 |
|---|
| InChI Key | OWPWFVVPBYFKBG-NYVHBPEFSA-N |
|---|
| Experimental Spectra |
|---|
|
| Not Available | | Predicted Spectra |
|---|
|
| | Spectrum Type | Description | Depositor ID | Depositor Organization | Depositor | Deposition Date | View |
|---|
| 1D NMR | 13C NMR Spectrum (1D, 25 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 100 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 252 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 1000 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 50 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 200 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 75 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 300 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 101 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 400 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 126 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 500 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 151 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 600 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 176 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 700 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 201 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 800 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 226 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 900 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum |
| | Chemical Shift Submissions |
|---|
|
| Not Available | | Species |
|---|
| Species of Origin | |
|---|
| Chemical Taxonomy |
|---|
| Description | Belongs to the class of organic compounds known as cardenolide glycosides and derivatives. Cardenolide glycosides and derivatives are compounds containing a carbohydrate glycosidically bound to the cardenolide moiety. |
|---|
| Kingdom | Organic compounds |
|---|
| Super Class | Lipids and lipid-like molecules |
|---|
| Class | Steroids and steroid derivatives |
|---|
| Sub Class | Steroid lactones |
|---|
| Direct Parent | Cardenolide glycosides and derivatives |
|---|
| Alternative Parents | |
|---|
| Substituents | - Cardanolide-glycoside
- 19-oxosteroid
- 14-hydroxysteroid
- Hydroxysteroid
- Oxosteroid
- Para-dioxane
- 2-furanone
- Oxane
- Cyclic alcohol
- Dihydrofuran
- Alpha,beta-unsaturated carboxylic ester
- Enoate ester
- Tertiary alcohol
- Carboxylic acid ester
- Hemiacetal
- Secondary alcohol
- Lactone
- Acetal
- Organoheterocyclic compound
- Oxacycle
- Carboxylic acid derivative
- Polyol
- Monocarboxylic acid or derivatives
- Alcohol
- Hydrocarbon derivative
- Organic oxygen compound
- Carbonyl group
- Organic oxide
- Aldehyde
- Organooxygen compound
- Aliphatic heteropolycyclic compound
|
|---|
| Molecular Framework | Aliphatic heteropolycyclic compounds |
|---|
| External Descriptors | |
|---|
| Physical Properties |
|---|
| State | Not Available |
|---|
| Experimental Properties | | Property | Value | Reference |
|---|
| Melting Point | Not Available | Not Available | | Boiling Point | Not Available | Not Available | | Water Solubility | Not Available | Not Available | | LogP | Not Available | Not Available |
|
|---|
| Predicted Properties | |
|---|
| General References | - Agrawal AA, Boroczky K, Haribal M, Hastings AP, White RA, Jiang RW, Duplais C: Cardenolides, toxicity, and the costs of sequestration in the coevolutionary interaction between monarchs and milkweeds. Proc Natl Acad Sci U S A. 2021 Apr 20;118(16). pii: 2024463118. doi: 10.1073/pnas.2024463118. [PubMed:33850021 ]
- Parthasarathy V, Menon AR, Devaranavadagi B: Target Fishing of Calactin, Calotropin and Calotoxin Using Reverse Pharmacophore Screening and Consensus Inverse Docking Approach. Curr Drug Discov Technol. 2021;18(6):e130921188782. doi: 10.2174/1570163817666201207143958. [PubMed:33292137 ]
- He YL, Yang HY, Huang PZ, Feng WJ, Gao K: Cytotoxic cardenolides from Calotropis gigantea. Phytochemistry. 2021 Dec;192:112951. doi: 10.1016/j.phytochem.2021.112951. Epub 2021 Sep 24. [PubMed:34563976 ]
- Winitchaikul T, Sawong S, Surangkul D, Srikummool M, Somran J, Pekthong D, Kamonlakorn K, Nangngam P, Parhira S, Srisawang P: Calotropis gigantea stem bark extract induced apoptosis related to ROS and ATP production in colon cancer cells. PLoS One. 2021 Aug 3;16(8):e0254392. doi: 10.1371/journal.pone.0254392. eCollection 2021. [PubMed:34343190 ]
- Sewidan N, Abu Khalaf R, Mohammad H, Hammad W: In-Vitro Studies on Selected Jordanian Plants as Dipeptidyl Peptidase-IV Inhibitors for Management of Diabetes Mellitus. Iran J Pharm Res. 2020 Fall;19(4):95-102. doi: 10.22037/ijpr.2020.1101232. [PubMed:33841525 ]
- Sweidan N, Esawi E, Ismail M, Alshaer W: Anticancer Cardenolides from the aerial parts of Calortopis procera. Z Naturforsch C J Biosci. 2021 Mar 29;76(5-6):243-250. doi: 10.1515/znc-2020-0281. Print 2021 May 26. [PubMed:33770827 ]
- Nakano D, Ishitsuka K, Takashima M, Arima R, Satou A, Tsuchihashi R, Okawa M, Tamura K, Kinjo J: Screening of Promising Chemotherapeutic Candidates from Plants against Human Adult T-Cell Leukemia/Lymphoma (VI): Cardenolides from Asclepias curassavica. Biol Pharm Bull. 2020;43(10):1609-1614. doi: 10.1248/bpb.b20-00465. [PubMed:32999172 ]
- Abebe B, Emire S: Manufacture of fresh cheese using east African Calotropis procera leaves extract crude enzyme as milk coagulant. Food Sci Nutr. 2020 Aug 13;8(9):4831-4842. doi: 10.1002/fsn3.1765. eCollection 2020 Sep. [PubMed:32994945 ]
- Kowalski P, Baum M, Korten M, Donath A, Dobler S: ABCB transporters in a leaf beetle respond to sequestered plant toxins. Proc Biol Sci. 2020 Sep 9;287(1934):20201311. doi: 10.1098/rspb.2020.1311. Epub 2020 Sep 2. [PubMed:32873204 ]
- Pederson PJ, Cai S, Carver C, Powell DR, Risinger AL, Grkovic T, O'Keefe BR, Mooberry SL, Cichewicz RH: Triple-Negative Breast Cancer Cells Exhibit Differential Sensitivity to Cardenolides from Calotropis gigantea. J Nat Prod. 2020 Jul 24;83(7):2269-2280. doi: 10.1021/acs.jnatprod.0c00423. Epub 2020 Jul 10. [PubMed:32649211 ]
|
|---|