Record Information |
---|
Version | 2.0 |
---|
Created at | 2022-04-27 22:51:45 UTC |
---|
Updated at | 2022-04-27 22:51:46 UTC |
---|
NP-MRD ID | NP0051531 |
---|
Secondary Accession Numbers | None |
---|
Natural Product Identification |
---|
Common Name | Orcinol |
---|
Description | Orcinol is found in Amaranthus hypochondriacus , Asarum kiusianum, Brucea javanica, Calluna vulgaris, Psydrax subcordata, Castanea sativa, Cleyera japonica, Dittrichia viscosa , Erica arborea , Erica umbellata, Lilium leichtlinii, Paraburkholderia phymatum, Parmelia tinctorum, Parmotrema tinctorum, Penicillium citrinum, Punctelia subrudecta, Rhododendron dauricum , Rumex patientia , Verticillium albo-atrum and Vitis vinifera. Orcinol was first documented in 1986 (PMID: 3742332). |
---|
Structure | InChI=1S/C7H8O2/c1-5-2-6(8)4-7(9)3-5/h2-4,8-9H,1H3 |
---|
Synonyms | Value | Source |
---|
1,3-Dihydroxy-5-methylbenzene | ChEBI | 3,5-Dihydroxytoluene | ChEBI | 3,5-Toluenediol | ChEBI | 3-Hydroxy-5-methylphenol | ChEBI | 5-Methyl-1,3-benzenediol | ChEBI | 5-Methyl-1,3-dihydroxybenzene | ChEBI | 5-Methylresorcinol | ChEBI | Orcin | ChEBI | Orcinol, 14C-labeled CPD | MeSH | Orzin | MeSH |
|
---|
Chemical Formula | C7H8O2 |
---|
Average Mass | 124.1390 Da |
---|
Monoisotopic Mass | 124.05243 Da |
---|
IUPAC Name | 5-methylbenzene-1,3-diol |
---|
Traditional Name | orcinol |
---|
CAS Registry Number | Not Available |
---|
SMILES | CC1=CC(O)=CC(O)=C1 |
---|
InChI Identifier | InChI=1S/C7H8O2/c1-5-2-6(8)4-7(9)3-5/h2-4,8-9H,1H3 |
---|
InChI Key | OIPPWFOQEKKFEE-UHFFFAOYSA-N |
---|
Experimental Spectra |
---|
|
| Not Available | Predicted Spectra |
---|
|
| Spectrum Type | Description | Depositor ID | Depositor Organization | Depositor | Deposition Date | View |
---|
1D NMR | 13C NMR Spectrum (1D, 25 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 100 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 252 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 1000 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 50 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 200 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 75 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 300 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 101 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 400 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 126 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 500 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 151 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 600 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 176 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 700 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 201 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 800 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 226 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 900 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum |
| Chemical Shift Submissions |
---|
|
| Not Available | Species |
---|
Species of Origin | |
---|
Chemical Taxonomy |
---|
Description | Belongs to the class of organic compounds known as resorcinols. Resorcinols are compounds containing a resorcinol moiety, which is a benzene ring bearing two hydroxyl groups at positions 1 and 3. |
---|
Kingdom | Organic compounds |
---|
Super Class | Benzenoids |
---|
Class | Phenols |
---|
Sub Class | Benzenediols |
---|
Direct Parent | Resorcinols |
---|
Alternative Parents | |
---|
Substituents | - Resorcinol
- M-cresol
- 1-hydroxy-4-unsubstituted benzenoid
- 1-hydroxy-2-unsubstituted benzenoid
- Toluene
- Monocyclic benzene moiety
- Organic oxygen compound
- Hydrocarbon derivative
- Organooxygen compound
- Aromatic homomonocyclic compound
|
---|
Molecular Framework | Aromatic homomonocyclic compounds |
---|
External Descriptors | |
---|
Physical Properties |
---|
State | Not Available |
---|
Experimental Properties | Property | Value | Reference |
---|
Melting Point | Not Available | Not Available | Boiling Point | Not Available | Not Available | Water Solubility | Not Available | Not Available | LogP | Not Available | Not Available |
|
---|
Predicted Properties | |
---|
General References | - Seshime Y, Juvvadi PR, Kitamoto K, Ebizuka Y, Nonaka T, Fujii I: Aspergillus oryzae type III polyketide synthase CsyA is involved in the biosynthesis of 3,5-dihydroxybenzoic acid. Bioorg Med Chem Lett. 2010 Aug 15;20(16):4785-8. doi: 10.1016/j.bmcl.2010.06.119. Epub 2010 Jun 25. [PubMed:20630753 ]
- Ivanova V, Backor M, Dahse HM, Graefe U: Molecular structural studies of lichen substances with antimicrobial, antiproliferative, and cytotoxic effects from Parmelia subrudecta. Prep Biochem Biotechnol. 2010;40(4):377-88. doi: 10.1080/10826068.2010.525432. [PubMed:21108141 ]
- Tretyakova NY, Lebedev AT, Petrosyan VS: Degradative pathways for aqueous chlorination of orcinol. Environ Sci Technol. 1994 Apr 1;28(4):606-13. doi: 10.1021/es00053a012. [PubMed:22196542 ]
- Kachurin AM, Vasil'ev VB, Soroka NV: [Oxidation of orcinol by ceruloplasmin and mixed-ligand copper complexes]. Biokhimiia. 1989 Jan;54(1):39-45. [PubMed:2719988 ]
- Sahasrabudhe SR, Lala D, Modi VV: Degradation of orcinol by Aspergillus niger. Can J Microbiol. 1986 Jul;32(7):535-8. doi: 10.1139/m86-099. [PubMed:3742332 ]
|
---|