| Record Information |
|---|
| Version | 2.0 |
|---|
| Created at | 2022-04-27 22:50:26 UTC |
|---|
| Updated at | 2022-04-27 22:50:26 UTC |
|---|
| NP-MRD ID | NP0051496 |
|---|
| Secondary Accession Numbers | None |
|---|
| Natural Product Identification |
|---|
| Common Name | 1,8,9-Trihydroxy-3-methoxycoumestan |
|---|
| Description | Wedelolactone belongs to the class of organic compounds known as coumestans. These are polycyclic aromatic compounds containing a coumestan moiety, which consists of a benzoxole fused to a chromen-2-one to form 1-Benzoxolo[3,2-c]chromen-6-one. They are oxidation products of pterocarpan. Thus, wedelolactone is considered to be a flavonoid. Wedelolactone is a secondary metabolite. Secondary metabolites are metabolically or physiologically non-essential metabolites that may serve a role as defense or signalling molecules. In some cases they are simply molecules that arise from the incomplete metabolism of other secondary metabolites. 1,8,9-Trihydroxy-3-methoxycoumestan is found in Aconitum kongboense, Eclipta alba , Eclipta prostrata, Hypericum erectum, Ougeinia dalbergioides , Thuja orientalis , Sphagneticola calendulacea and Wedelia calendulacea . 1,8,9-Trihydroxy-3-methoxycoumestan was first documented in 2021 (PMID: 34126350). Based on a literature review a significant number of articles have been published on Wedelolactone (PMID: 35337710) (PMID: 35255785) (PMID: 35203520) (PMID: 35182545) (PMID: 35047047) (PMID: 34984912). |
|---|
| Structure | COC1=CC(O)=C2C3=C(C4=C(O3)C=C(O)C(O)=C4)C(=O)OC2=C1 InChI=1S/C16H10O7/c1-21-6-2-10(19)14-12(3-6)23-16(20)13-7-4-8(17)9(18)5-11(7)22-15(13)14/h2-5,17-19H,1H3 |
|---|
| Synonyms | | Value | Source |
|---|
| 1,8,9-Trihydroxy-3-methoxycoumestan | ChEBI |
|
|---|
| Chemical Formula | C16H10O7 |
|---|
| Average Mass | 314.2490 Da |
|---|
| Monoisotopic Mass | 314.04265 Da |
|---|
| IUPAC Name | 3,13,14-trihydroxy-5-methoxy-8,17-dioxatetracyclo[8.7.0.0^{2,7}.0^{11,16}]heptadeca-1(10),2,4,6,11,13,15-heptaen-9-one |
|---|
| Traditional Name | 3,13,14-trihydroxy-5-methoxy-8,17-dioxatetracyclo[8.7.0.0^{2,7}.0^{11,16}]heptadeca-1(10),2,4,6,11,13,15-heptaen-9-one |
|---|
| CAS Registry Number | Not Available |
|---|
| SMILES | COC1=CC(O)=C2C3=C(C4=C(O3)C=C(O)C(O)=C4)C(=O)OC2=C1 |
|---|
| InChI Identifier | InChI=1S/C16H10O7/c1-21-6-2-10(19)14-12(3-6)23-16(20)13-7-4-8(17)9(18)5-11(7)22-15(13)14/h2-5,17-19H,1H3 |
|---|
| InChI Key | XQDCKJKKMFWXGB-UHFFFAOYSA-N |
|---|
| Experimental Spectra |
|---|
|
| Not Available | | Predicted Spectra |
|---|
|
| | Spectrum Type | Description | Depositor ID | Depositor Organization | Depositor | Deposition Date | View |
|---|
| 1D NMR | 13C NMR Spectrum (1D, 25 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 100 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 252 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 1000 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 50 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 200 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 75 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 300 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 101 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 400 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 126 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 500 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 151 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 600 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 176 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 700 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 201 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 800 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 226 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 900 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum |
| | Chemical Shift Submissions |
|---|
|
| Not Available | | Species |
|---|
| Species of Origin | |
|---|
| Chemical Taxonomy |
|---|
| Description | Belongs to the class of organic compounds known as coumestans. These are polycyclic aromatic compounds containing a coumestan moiety, which consists of a benzoxole fused to a chromen-2-one to form 1-Benzoxolo[3,2-c]chromen-6-one. They are oxidation products of pterocarpan. |
|---|
| Kingdom | Organic compounds |
|---|
| Super Class | Phenylpropanoids and polyketides |
|---|
| Class | Isoflavonoids |
|---|
| Sub Class | Coumestans |
|---|
| Direct Parent | Coumestans |
|---|
| Alternative Parents | |
|---|
| Substituents | - Coumestan
- Furanocoumarin
- Angular furanocoumarin
- Coumarin
- 1-benzopyran
- Benzopyran
- Furopyran
- Benzofuran
- Anisole
- Pyranone
- 1-hydroxy-4-unsubstituted benzenoid
- Alkyl aryl ether
- 1-hydroxy-2-unsubstituted benzenoid
- Pyran
- Benzenoid
- Heteroaromatic compound
- Furan
- Lactone
- Oxacycle
- Organoheterocyclic compound
- Polyol
- Ether
- Organic oxygen compound
- Organic oxide
- Hydrocarbon derivative
- Organooxygen compound
- Aromatic heteropolycyclic compound
|
|---|
| Molecular Framework | Aromatic heteropolycyclic compounds |
|---|
| External Descriptors | |
|---|
| Physical Properties |
|---|
| State | Not Available |
|---|
| Experimental Properties | | Property | Value | Reference |
|---|
| Melting Point | Not Available | Not Available | | Boiling Point | Not Available | Not Available | | Water Solubility | Not Available | Not Available | | LogP | Not Available | Not Available |
|
|---|
| Predicted Properties | |
|---|
| General References | - Hioki T, Tokuda H, Kuroyanagi G, Kim W, Tachi J, Matsushima-Nishiwaki R, Iida H, Kozawa O: Olive polyphenols attenuate TNF-alpha-stimulated M-CSF and IL-6 synthesis in osteoblasts: Suppression of Akt and p44/p42 MAP kinase signaling pathways. Biomed Pharmacother. 2021 Jun 11;141:111816. doi: 10.1016/j.biopha.2021.111816. [PubMed:34126350 ]
- Prakash T, Janadri S: Anti-inflammatory effect of wedelolactone on DSS induced colitis in rats: IL-6/STAT3 signaling pathway. J Ayurveda Integr Med. 2023 Mar-Apr;14(2):100544. doi: 10.1016/j.jaim.2022.100544. Epub 2022 Mar 22. [PubMed:35337710 ]
- Zou YX, Mu ZQ, Wang J, Tian S, Li Y, Liu Y: Wedelolactone, a Component from Eclipta prostrata (L.) L., Inhibits the Proliferation and Migration of Head and Neck Squamous Cancer Cells through the AhR Pathway. Curr Pharm Biotechnol. 2022;23(15):1883-1892. doi: 10.2174/1389201023666220307110554. [PubMed:35255785 ]
- Harkin K, Augustine J, Stitt AW, Xu H, Chen M: Wedelolactone Attenuates N-methyl-N-nitrosourea-Induced Retinal Neurodegeneration through Suppression of the AIM2/CASP11 Pathway. Biomedicines. 2022 Jan 28;10(2):311. doi: 10.3390/biomedicines10020311. [PubMed:35203520 ]
- Wang SH, Cui LG, Su XL, Komal S, Ni RC, Zang MX, Zhang LR, Han SN: GSK-3beta-mediated activation of NLRP3 inflammasome leads to pyroptosis and apoptosis of rat cardiomyocytes and fibroblasts. Eur J Pharmacol. 2022 Apr 5;920:174830. doi: 10.1016/j.ejphar.2022.174830. Epub 2022 Feb 16. [PubMed:35182545 ]
- Cai Z, Wang H, Jiang J, Xiao S, Xiao J, He J, Zhao Z, Yin J: Elaborate the Mechanism of Ancient Classic Prescriptions (Erzhi Formula) in Reversing GIOP by Network Pharmacology Coupled with Zebrafish Verification. Evid Based Complement Alternat Med. 2022 Jan 10;2022:7019792. doi: 10.1155/2022/7019792. eCollection 2022. [PubMed:35047047 ]
- Wu Y, Pan B, Zhang Z, Li X, Leng Y, Ji Y, Sun K, Chen AF: Caspase-4/11-Mediated Pulmonary Artery Endothelial Cell Pyroptosis Contributes to Pulmonary Arterial Hypertension. Hypertension. 2022 Mar;79(3):536-548. doi: 10.1161/HYPERTENSIONAHA.121.17868. Epub 2022 Jan 5. [PubMed:34984912 ]
- Sun X, Zhang H, Qin Q, Zhang X, Hou Y, Chen D, Su X, Jia M, Chen Y: Inhibitors of the MAPK/ NF-kappaB pathway attenuate the upregulation of the ET(B) receptor mediated by high glucose in vascular smooth muscle cells. Peptides. 2022 Apr;150:170732. doi: 10.1016/j.peptides.2021.170732. Epub 2021 Dec 29. [PubMed:34971676 ]
- Maciel G, Lopes AA, Cantrell CL, de Castro Franca S, Bertoni BW, Lourenco MV: Jasmonates promote enhanced production of bioactive caffeoylquinic acid derivative in Eclipta prostrata (L.) L. hairy roots. Plant Cell Tissue Organ Cult. 2022;149(1-2):363-369. doi: 10.1007/s11240-021-02201-4. Epub 2021 Nov 22. [PubMed:34840370 ]
- Yao E, Yang X, Huang X, Mi Y, Wu X, Fang M, Huang J, Qiu Y, Hong X, Peng L, Ren J, Huang R, Chen C, Yang L, Zhou Y, Zhuo R, Jin X, Zhao Y: Phytochemical wedelolactone reverses obesity by prompting adipose browning through SIRT1/AMPK/ PPARalpha pathway via targeting nicotinamide N-methyltransferase. Phytomedicine. 2022 Jan;94:153843. doi: 10.1016/j.phymed.2021.153843. Epub 2021 Nov 1. [PubMed:34785414 ]
- Bhattacharyya S, Law S: Environmental pollutant N-N'ethylnitrosourea-induced leukemic NLRP3 inflammasome activation and its amelioration by Eclipta prostrata and its active compound wedelolactone. Environ Toxicol. 2022 Feb;37(2):322-334. doi: 10.1002/tox.23400. Epub 2021 Nov 2. [PubMed:34726823 ]
- Ai Y, Shi W, Zuo X, Sun X, Chen Y, Wang Z, Li R, Song X, Dai W, Mu W, Ding K, Li Z, Li Q, Xiao X, Zhan X, Bai Z: Corrigendum: The Combination of Schisandrol B and Wedelolactone Synergistically Reverses Hepatic Fibrosis via Modulating Multiple Signaling Pathways in Mice. Front Pharmacol. 2021 Oct 7;12:777914. doi: 10.3389/fphar.2021.777914. eCollection 2021. [PubMed:34690790 ]
- Wang G, Bi Y, Xiong H, Bo T, Han L, Zhou L, Zhang C, Zhang Y: Wedelolactone protects against cisplatin-induced nephrotoxicity in mice via inhibition of organic cation transporter 2. Hum Exp Toxicol. 2021 Dec;40(12_suppl):S447-S459. doi: 10.1177/09603271211047915. Epub 2021 Sep 30. [PubMed:34592875 ]
- Xu S, Liu X, Liu X, Shi Y, Jin X, Zhang N, Li X, Zhang H: Wedelolactone ameliorates Pseudomonas aeruginosa-induced inflammation and corneal injury by suppressing caspase-4/5/11/GSDMD-mediated non-canonical pyroptosis. Exp Eye Res. 2021 Oct;211:108750. doi: 10.1016/j.exer.2021.108750. Epub 2021 Sep 2. [PubMed:34481822 ]
- Pan B, Pan W, Lu Z, Xia C: Pharmacological Mechanisms Underlying the Hepatoprotective Effects of Ecliptae herba on Hepatocellular Carcinoma. Evid Based Complement Alternat Med. 2021 Jul 16;2021:5591402. doi: 10.1155/2021/5591402. eCollection 2021. [PubMed:34326886 ]
- Fan R, Sui J, Dong X, Jing B, Gao Z: Wedelolactone alleviates acute pancreatitis and associated lung injury via GPX4 mediated suppression of pyroptosis and ferroptosis. Free Radic Biol Med. 2021 Sep;173:29-40. doi: 10.1016/j.freeradbiomed.2021.07.009. Epub 2021 Jul 8. [PubMed:34246777 ]
- Tsai YT, Chen PY, To KY: Induction of Polyploidy and Metabolic Profiling in the Medicinal Herb Wedelia chinensis. Plants (Basel). 2021 Jun 17;10(6):1232. doi: 10.3390/plants10061232. [PubMed:34204356 ]
- Ai Y, Shi W, Zuo X, Sun X, Chen Y, Wang Z, Li R, Song X, Dai W, Mu W, Ding K, Li Z, Li Q, Xiao X, Zhan X, Bai Z: The Combination of Schisandrol B and Wedelolactone Synergistically Reverses Hepatic Fibrosis Via Modulating Multiple Signaling Pathways in Mice. Front Pharmacol. 2021 Jun 3;12:655531. doi: 10.3389/fphar.2021.655531. eCollection 2021. [PubMed:34149411 ]
- Sarwar S, Alamro AA, Alghamdi AA, Naeem K, Ullah S, Arif M, Yu JQ, Huq F: Enhanced Accumulation of Cisplatin in Ovarian Cancer Cells from Combination with Wedelolactone and Resulting Inhibition of Multiple Epigenetic Drivers. Drug Des Devel Ther. 2021 May 25;15:2211-2227. doi: 10.2147/DDDT.S288707. eCollection 2021. [PubMed:34079223 ]
|
|---|