| Record Information |
|---|
| Version | 2.0 |
|---|
| Created at | 2022-04-27 22:15:51 UTC |
|---|
| Updated at | 2022-04-27 22:15:51 UTC |
|---|
| NP-MRD ID | NP0050854 |
|---|
| Secondary Accession Numbers | None |
|---|
| Natural Product Identification |
|---|
| Common Name | (-)-Coronaridine |
|---|
| Description | (-)-Coronaridine belongs to the class of organic compounds known as ibogan-type alkaloids. These are indole alkaloids with a structure based on the ibogamine skeleton or a derivative thereof. Ibogamine is a pentacyclic heterocyclic compound consisting of an indole fused to an azepane-containing tricyclic moiety ring. Iboga alkaloids arise from the cyclization of a secodine-type precursor through the formation of a 16,21 bond (-)-coronaridine is a secondary metabolite. Secondary metabolites are metabolically or physiologically non-essential metabolites that may serve a role as defense or signalling molecules. In some cases they are simply molecules that arise from the incomplete metabolism of other secondary metabolites. (-)-Coronaridine is found in Catharanthus roseus , Tabernaemontana divaricata, Ervatamia divaricata Gouyahua, Tabernaemontana bufalina, Pandaca mocquerysii, Peschiera affinis, Tabernaemontana grandiflora, Stemmadenia obovata Benth, Tabernaemontana africana, Tabernaemontana alternifolia, Tabernaemontana calcarea, Tabernaemontana catharinensis, Tabernaemontana citrifolia, Tabernaemontana coronaria , Tabernaemontana corymbosa, Tabernaemontana cymosa, Tabernaemontana eglandulosa, Tabernaemontana glandulosa, Tabernaemontana heyneana , Tabernaemontana hystrix, Tabernaemontana laeta, Tabernaemontana litoralis, Tabernaemontana macrocalyx, Tabernaemontana markgrafiana, Tabernaemontana odontadeniiflora, Tabernaemontana oppositifolia, Tabernaemontana pandacaqui, Tabernaemontana pauciflora, Tabernaemontana peduncularis, Tabernaemontana penduliflora, Tabernaemontana solanifolia, Tabernaemontana undulata, Tabernaemontana vanheurckii, Tabernanthe iboga , Trachelospermum jasminoides and Voacanga africana. (-)-Coronaridine was first documented in 2020 (PMID: 33375687). Based on a literature review a small amount of articles have been published on (-)-coronaridine (PMID: 35366775) (PMID: 35304861) (PMID: 34047097) (PMID: 33321518). |
|---|
| Structure | CC[C@H]1C[C@H]2CN3CCC4=C(NC5=CC=CC=C45)[C@](C2)([C@H]13)C(=O)OC InChI=1S/C21H26N2O2/c1-3-14-10-13-11-21(20(24)25-2)18-16(8-9-23(12-13)19(14)21)15-6-4-5-7-17(15)22-18/h4-7,13-14,19,22H,3,8-12H2,1-2H3/t13-,14+,19+,21-/m1/s1 |
|---|
| Synonyms | | Value | Source |
|---|
| Coronaridine | ChEBI | | Coronardine | MeSH | | Coronardine monohydrochloride | MeSH | | Coronardine monohydrochloride, (+-)-isomer | MeSH |
|
|---|
| Chemical Formula | C21H26N2O2 |
|---|
| Average Mass | 338.4510 Da |
|---|
| Monoisotopic Mass | 338.19943 Da |
|---|
| IUPAC Name | methyl (1S,15R,17S,18S)-17-ethyl-3,13-diazapentacyclo[13.3.1.0^{2,10}.0^{4,9}.0^{13,18}]nonadeca-2(10),4,6,8-tetraene-1-carboxylate |
|---|
| Traditional Name | methyl (1S,15R,17S,18S)-17-ethyl-3,13-diazapentacyclo[13.3.1.0^{2,10}.0^{4,9}.0^{13,18}]nonadeca-2(10),4,6,8-tetraene-1-carboxylate |
|---|
| CAS Registry Number | Not Available |
|---|
| SMILES | CC[C@H]1C[C@H]2CN3CCC4=C(NC5=CC=CC=C45)[C@](C2)([C@H]13)C(=O)OC |
|---|
| InChI Identifier | InChI=1S/C21H26N2O2/c1-3-14-10-13-11-21(20(24)25-2)18-16(8-9-23(12-13)19(14)21)15-6-4-5-7-17(15)22-18/h4-7,13-14,19,22H,3,8-12H2,1-2H3/t13-,14+,19+,21-/m1/s1 |
|---|
| InChI Key | NVVDQMVGALBDGE-PZXGUROGSA-N |
|---|
| Experimental Spectra |
|---|
|
| Not Available | | Predicted Spectra |
|---|
|
| | Spectrum Type | Description | Depositor ID | Depositor Organization | Depositor | Deposition Date | View |
|---|
| 1D NMR | 13C NMR Spectrum (1D, 25 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 100 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 252 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 1000 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 50 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 200 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 75 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 300 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 101 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 400 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 126 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 500 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 151 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 600 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 176 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 700 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 201 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 800 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 226 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 900 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum |
| | Chemical Shift Submissions |
|---|
|
| Not Available | | Species |
|---|
| Species of Origin | |
|---|
| Chemical Taxonomy |
|---|
| Description | Belongs to the class of organic compounds known as ibogan-type alkaloids. These are indole alkaloids with a structure based on the ibogamine skeleton or a derivative thereof. Ibogamine is a pentacyclic heterocyclic compound consisting of an indole fused to an azepane-containing tricyclic moiety ring. Iboga alkaloids arise from the cyclization of a secodine-type precursor through the formation of a 16,21 bond. |
|---|
| Kingdom | Organic compounds |
|---|
| Super Class | Alkaloids and derivatives |
|---|
| Class | Ibogan-type alkaloids |
|---|
| Sub Class | Not Available |
|---|
| Direct Parent | Ibogan-type alkaloids |
|---|
| Alternative Parents | |
|---|
| Substituents | - Ibogan skeleton
- Catharanthine skeleton
- Pyrroloazepine
- 3-alkylindole
- Indole
- Indole or derivatives
- Piperidinecarboxylic acid
- Azepine
- Aralkylamine
- Piperidine
- Benzenoid
- Pyrrole
- Methyl ester
- Heteroaromatic compound
- Tertiary aliphatic amine
- Tertiary amine
- Amino acid or derivatives
- Carboxylic acid ester
- Organoheterocyclic compound
- Carboxylic acid derivative
- Azacycle
- Monocarboxylic acid or derivatives
- Organic oxide
- Organic oxygen compound
- Amine
- Carbonyl group
- Hydrocarbon derivative
- Organooxygen compound
- Organic nitrogen compound
- Organonitrogen compound
- Aromatic heteropolycyclic compound
|
|---|
| Molecular Framework | Aromatic heteropolycyclic compounds |
|---|
| External Descriptors | Not Available |
|---|
| Physical Properties |
|---|
| State | Not Available |
|---|
| Experimental Properties | | Property | Value | Reference |
|---|
| Melting Point | Not Available | Not Available | | Boiling Point | Not Available | Not Available | | Water Solubility | Not Available | Not Available | | LogP | Not Available | Not Available |
|
|---|
| Predicted Properties | |
|---|
| General References | - Babiaka SB, Simoben CV, Abuga KO, Mbah JA, Karpoormath R, Ongarora D, Mugo H, Monya E, Cho-Ngwa F, Sippl W, Loveridge EJ, Ntie-Kang F: Alkaloids with Anti-Onchocercal Activity from Voacanga africana Stapf (Apocynaceae): Identification and Molecular Modeling. Molecules. 2020 Dec 25;26(1). pii: molecules26010070. doi: 10.3390/molecules26010070. [PubMed:33375687 ]
- Jothimani G, Ganesan H, Pathak S, Banerjee A: Molecular characterization of primary and metastatic colon cancer cells to identify therapeutic targets with natural compounds. Curr Top Med Chem. 2022 Apr 1. pii: CTMC-EPUB-122190. doi: 10.2174/1568026622666220401161511. [PubMed:35366775 ]
- Arias HR, Borghese CM, Germann AL, Pierce SR, Bonardi A, Nocentini A, Gratteri P, Thodati TM, Lim NJ, Harris RA, Akk G: (+)-Catharanthine potentiates the GABAA receptor by binding to a transmembrane site at the beta(+)/alpha(-) interface near the TM2-TM3 loop. Biochem Pharmacol. 2022 May;199:114993. doi: 10.1016/j.bcp.2022.114993. Epub 2022 Mar 15. [PubMed:35304861 ]
- Li ZW, Sang CC, Sun B, Tian HY, Zhang XQ, Ye WC: [A new alkaloid from Ervatamia hainanensis]. Zhongguo Zhong Yao Za Zhi. 2021 May;46(10):2509-2513. doi: 10.19540/j.cnki.cjcmm.20210125.602. [PubMed:34047097 ]
- Musquiari B, Crevelin EJ, Bertoni BW, Franca SC, Pereira AMS, Castello ACD, Castillo-Ordonez WO, Giuliatti S, Lopes AA: Precursor-directed Biosynthesis in Tabernaemontana catharinensis as a New Avenue for Alzheimer's Disease-modifying Agents. Planta Med. 2021 Feb;87(1-02):136-147. doi: 10.1055/a-1315-2282. Epub 2020 Dec 15. [PubMed:33321518 ]
|
|---|