Record Information |
---|
Version | 2.0 |
---|
Created at | 2022-03-17 19:47:12 UTC |
---|
Updated at | 2022-03-17 19:47:12 UTC |
---|
NP-MRD ID | NP0046027 |
---|
Secondary Accession Numbers | None |
---|
Natural Product Identification |
---|
Common Name | Patuletin |
---|
Description | Patuletin belongs to the class of organic compounds known as flavonols. Flavonols are compounds that contain a flavone (2-phenyl-1-benzopyran-4-one) backbone carrying a hydroxyl group at the 3-position. Thus, patuletin is considered to be a flavonoid lipid molecule. A trimethoxyflavone that is quercetagetin methylated at position 6. Patuletin is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Outside of the human body, Patuletin has been detected, but not quantified in, a few different foods, such as german camomiles, herbs and spices, and spinachs. Patuletin is found in Achillea grandifolia, Achillea moschata, Actinocephalus polyanthus, Tagetes erecta, Ageratina areolaris, Allium obliquum , Anthemis cotula, Anthemis tinctoria , Arctotis argentea, Arnica acaulis, Arnica gracilis, Arnica latifolia, Arnica montana, Arnica sachalinensis, Arnica spp., Artemisia annua , Artemisia barrelieri, Artemisia monosperma, Balsamorhiza sagittata, Brickellia cylindracea, Brickellia secundiflora, Calycera sympaganthera, Centaurea collina L., Centaurea incana, Centella asiatica, Chiliadenus montanus, Chrysactinia mexicana, Deinandra increscens, Deinandra minthornii, Eriocaulon buergerianum, Eriocaulon cinereum, Eriocaulon spp., Eriophyllum confertiflorum, Eupatorium perfoliatum, Eupatorium spp., Fumaria capreolata , Fumaria officinalis , Fumaria schleicheri, Fumaria vaillantii , Gutierrezia wrightii, Hemizonia spp., Hymenoxys scaposa, Ipomopsis aggregata, Kalanchoe laciniata, Leucaena glauca , Loeseliastrum depressum, Matricaria chamomilla , Microliabum polymnioides, Paepalanthus polyanthus, Pallenis spinosa, Inula britannica , Prosopis cineraria, Rhaponticum carthamoides , Tagetes lucida, Tagetes minuta, Tagetes patula and Verbascum lychnitis. Patuletin was first documented in 1991 (PMID: 1843126). This could make patuletin a potential biomarker for the consumption of these foods (PMID: 10650074) (PMID: 11909694) (PMID: 18998399) (PMID: 21284510) (PMID: 21500799) (PMID: 23196154). |
---|
Structure | COC1=C(O)C2=C(OC(=C(O)C2=O)C2=CC(O)=C(O)C=C2)C=C1O InChI=1S/C16H12O8/c1-23-16-9(19)5-10-11(13(16)21)12(20)14(22)15(24-10)6-2-3-7(17)8(18)4-6/h2-5,17-19,21-22H,1H3 |
---|
Synonyms | Value | Source |
---|
2-(3,4-Dihydroxyphenyl)-3,5,7-trihydroxy-6-methoxy-4-benzopyrone | ChEBI | 2-(3,4-Dihydroxyphenyl)-3,5,7-trihydroxy-6-methoxy-4H-1-benzopyran-4-one | ChEBI | 3',4',5,7-Tetrahydroxy-6-methoxyflavonol | ChEBI | 3,5,7,3',4'-Pentahydroxy-6-methoxyflavone | ChEBI | 6-Methoxyquercetin | ChEBI | 6-O-Methylquercetagetin | ChEBI | Quercetagetin 6-methyl ether | ChEBI | 2-(3,4-Dihydroxyphenyl)-3,5,7-trihydroxy-6-methoxy-4H-1-benzopyran-4-one, 9ci | HMDB | 2-(3,4-Dihydroxyphenyl)-3,5,7-trihydroxy-6-methoxy-4H-chromen-4-one | MeSH |
|
---|
Chemical Formula | C16H12O8 |
---|
Average Mass | 332.2617 Da |
---|
Monoisotopic Mass | 332.05322 Da |
---|
IUPAC Name | 2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-6-methoxy-4H-chromen-4-one |
---|
Traditional Name | patuletin |
---|
CAS Registry Number | 519-96-0 |
---|
SMILES | COC1=C(O)C2=C(OC(=C(O)C2=O)C2=CC(O)=C(O)C=C2)C=C1O |
---|
InChI Identifier | InChI=1S/C16H12O8/c1-23-16-9(19)5-10-11(13(16)21)12(20)14(22)15(24-10)6-2-3-7(17)8(18)4-6/h2-5,17-19,21-22H,1H3 |
---|
InChI Key | JMIFIYIEXODVTO-UHFFFAOYSA-N |
---|
Experimental Spectra |
---|
|
| Not Available | Predicted Spectra |
---|
|
| Spectrum Type | Description | Depositor ID | Depositor Organization | Depositor | Deposition Date | View |
---|
1D NMR | 13C NMR Spectrum (1D, 25 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 100 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 252 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 1000 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 50 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 200 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 75 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 300 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 101 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 400 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 126 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 500 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 151 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 600 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 176 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 700 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 201 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 800 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 226 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 900 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum |
| Chemical Shift Submissions |
---|
|
| Not Available | Species |
---|
Species of Origin | |
---|
Chemical Taxonomy |
---|
Description | Belongs to the class of organic compounds known as flavonols. Flavonols are compounds that contain a flavone (2-phenyl-1-benzopyran-4-one) backbone carrying a hydroxyl group at the 3-position. |
---|
Kingdom | Organic compounds |
---|
Super Class | Phenylpropanoids and polyketides |
---|
Class | Flavonoids |
---|
Sub Class | Flavones |
---|
Direct Parent | Flavonols |
---|
Alternative Parents | |
---|
Substituents | - 6-methoxyflavonoid-skeleton
- 3-hydroxyflavone
- Hydroxyflavonoid
- 5-hydroxyflavonoid
- 7-hydroxyflavonoid
- 4'-hydroxyflavonoid
- 3-hydroxyflavonoid
- 3'-hydroxyflavonoid
- Chromone
- 1-benzopyran
- Benzopyran
- Anisole
- Catechol
- Pyranone
- Phenol
- Alkyl aryl ether
- 1-hydroxy-4-unsubstituted benzenoid
- 1-hydroxy-2-unsubstituted benzenoid
- Benzenoid
- Pyran
- Monocyclic benzene moiety
- Vinylogous acid
- Heteroaromatic compound
- Ether
- Polyol
- Organoheterocyclic compound
- Oxacycle
- Organic oxygen compound
- Organooxygen compound
- Hydrocarbon derivative
- Organic oxide
- Aromatic heteropolycyclic compound
|
---|
Molecular Framework | Aromatic heteropolycyclic compounds |
---|
External Descriptors | |
---|
Physical Properties |
---|
State | Not Available |
---|
Experimental Properties | Property | Value | Reference |
---|
Melting Point | Not Available | Not Available | Boiling Point | Not Available | Not Available | Water Solubility | Not Available | Not Available | LogP | Not Available | Not Available |
|
---|
Predicted Properties | |
---|
General References | - Park EJ, Kim Y, Kim J: Acylated flavonol glycosides from the flower of Inula britannica. J Nat Prod. 2000 Jan;63(1):34-6. doi: 10.1021/np990271r. [PubMed:10650074 ]
- Kim SR, Park MJ, Lee MK, Sung SH, Park EJ, Kim J, Kim SY, Oh TH, Markelonis GJ, Kim YC: Flavonoids of Inula britannica protect cultured cortical cells from necrotic cell death induced by glutamate. Free Radic Biol Med. 2002 Apr 1;32(7):596-604. doi: 10.1016/s0891-5849(02)00751-7. [PubMed:11909694 ]
- Li S, Mao W, Cao X, Liang S, Ding Z, Li N: Inhibition of rat lens aldose reductase by quercetagetin and patuletin. Yan Ke Xue Bao. 1991 Mar;7(1):29-30, 33. [PubMed:1843126 ]
- Schmeda-Hirschmann G, Tapia A, Theoduloz C, Rodriguez J, Lopez S, Feresin GE: Free radical scavengers and antioxidants from Tagetes mendocina. Z Naturforsch C J Biosci. 2004 May-Jun;59(5-6):345-53. doi: 10.1515/znc-2004-5-610. [PubMed:18998399 ]
- Faizi S, Dar A, Siddiqi H, Naqvi S, Naz A, Bano S, Lubna: Bioassay-guided isolation of antioxidant agents with analgesic properties from flowers of Tagetes patula. Pharm Biol. 2011 May;49(5):516-25. doi: 10.3109/13880209.2010.523006. Epub 2011 Feb 1. [PubMed:21284510 ]
- Negri G, Teixeira EW, Alves ML, Moreti AC, Otsuk IP, Borguini RG, Salatino A: Hydroxycinnamic acid amide derivatives, phenolic compounds and antioxidant activities of extracts of pollen samples from Southeast Brazil. J Agric Food Chem. 2011 May 25;59(10):5516-22. doi: 10.1021/jf200602k. Epub 2011 Apr 27. [PubMed:21500799 ]
- Woerdenbag HJ, Merfort I, Schmidt TJ, Passreiter CM, Willuhn G, Van Uden W, Pras N, Konings AW: Decreased helenalin-induced cytotoxicity by flavonoids from Arnica as studied in a human lung carcinoma cell line. Phytomedicine. 1995 Oct;2(2):127-32. doi: 10.1016/S0944-7113(11)80057-7. [PubMed:23196154 ]
|
---|