Np mrd loader

Record Information
Version1.0
Created at2021-11-12 23:53:41 UTC
Updated at2021-11-26 17:46:08 UTC
NP-MRD IDNP0044163
Secondary Accession NumbersNone
Natural Product Identification
Common Name3-acetyllucidumol B
Description3-Acetyl-lucidumol B belongs to the class of organic compounds known as triterpenoids. These are terpene molecules containing six isoprene units. It was first documented in 2021 (PMID: 34758541). Based on a literature review a significant number of articles have been published on 3-acetyl-lucidumol B (PMID: 34758536) (PMID: 34758492) (PMID: 34758485) (PMID: 34758456) (PMID: 34758461) (PMID: 34758426).
Structure
Thumb
SynonymsNot Available
Chemical FormulaC32H52O4
Average Mass500.7640 Da
Monoisotopic Mass500.38656 Da
IUPAC Name(2S,5S,7R,11R,14R,15R)-14-[(2R,5S)-5,6-dihydroxy-6-methylheptan-2-yl]-2,6,6,11,15-pentamethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadeca-1(17),9-dien-5-yl acetate
Traditional Name(2S,5S,7R,11R,14R,15R)-14-[(2R,5S)-5,6-dihydroxy-6-methylheptan-2-yl]-2,6,6,11,15-pentamethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadeca-1(17),9-dien-5-yl acetate
CAS Registry NumberNot Available
SMILES
[H][C@@]1(CC[C@@]2(C)C3=CC[C@@]4([H])C(C)(C)[C@H](CC[C@]4(C)C3=CC[C@]12C)OC(C)=O)[C@H](C)CC[C@H](O)C(C)(C)O
InChI Identifier
InChI=1S/C32H52O4/c1-20(10-13-26(34)29(5,6)35)22-14-18-32(9)24-11-12-25-28(3,4)27(36-21(2)33)16-17-30(25,7)23(24)15-19-31(22,32)8/h11,15,20,22,25-27,34-35H,10,12-14,16-19H2,1-9H3/t20-,22-,25+,26+,27+,30-,31-,32+/m1/s1
InChI KeyXLSSNOGPDBTMBM-AVMHZLENSA-N
Experimental Spectra
Spectrum TypeDescriptionDepositor EmailDepositor OrganizationDepositorDeposition DateView
1D NMR13C NMR Spectrum (1D, 50 MHz, Chloroform-d, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 150 MHz, Chloroform-d, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 250 MHz, Chloroform-d, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 175 MHz, Chloroform-d, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 75 MHz, Chloroform-d, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 100 MHz, Chloroform-d, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 225 MHz, Chloroform-d, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 200 MHz, Chloroform-d, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 125 MHz, Chloroform-d, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 25 MHz, Chloroform-d, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 300 MHz, Chloroform-d, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 900 MHz, Chloroform-d, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 700 MHz, Chloroform-d, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 400 MHz, Chloroform-d, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 100 MHz, Chloroform-d, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 500 MHz, Chloroform-d, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 1000 MHz, Chloroform-d, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 800 MHz, Chloroform-d, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 200 MHz, Chloroform-d, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 600 MHz, Chloroform-d, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
Predicted Spectra
Not Available
Chemical Shift Submissions
Not Available
Species
Species of Origin
  • Ganoderma hainanense
  • Chemical Taxonomy
    Description Belongs to the class of organic compounds known as triterpenoids. These are terpene molecules containing six isoprene units.
    KingdomOrganic compounds
    Super ClassLipids and lipid-like molecules
    ClassPrenol lipids
    Sub ClassTriterpenoids
    Direct ParentTriterpenoids
    Alternative Parents
    Substituents
    • Triterpenoid
    • 25-hydroxysteroid
    • 24-hydroxysteroid
    • Dihydroxy bile acid, alcohol, or derivatives
    • Cholane-skeleton
    • Hydroxy bile acid, alcohol, or derivatives
    • Bile acid, alcohol, or derivatives
    • Steroid ester
    • 14-alpha-methylsteroid
    • Steroid
    • Delta-7-steroid
    • Tertiary alcohol
    • Secondary alcohol
    • Carboxylic acid ester
    • 1,2-diol
    • Monocarboxylic acid or derivatives
    • Carboxylic acid derivative
    • Organic oxygen compound
    • Organic oxide
    • Hydrocarbon derivative
    • Organooxygen compound
    • Carbonyl group
    • Alcohol
    • Aliphatic homopolycyclic compound
    Molecular FrameworkAliphatic homopolycyclic compounds
    External DescriptorsNot Available
    Physical Properties
    StateNot Available
    Experimental Properties
    PropertyValueReference
    Melting PointNot AvailableNot Available
    Boiling PointNot AvailableNot Available
    Water SolubilityNot AvailableNot Available
    LogPNot AvailableNot Available
    Predicted Properties
    PropertyValueSource
    logP7.25ALOGPS
    logP5.65ChemAxon
    logS-5.7ALOGPS
    pKa (Strongest Acidic)13.85ChemAxon
    pKa (Strongest Basic)-3.1ChemAxon
    Physiological Charge0ChemAxon
    Hydrogen Acceptor Count3ChemAxon
    Hydrogen Donor Count2ChemAxon
    Polar Surface Area66.76 ŲChemAxon
    Rotatable Bond Count7ChemAxon
    Refractivity147.16 m³·mol⁻¹ChemAxon
    Polarizability61.28 ųChemAxon
    Number of Rings4ChemAxon
    BioavailabilityNoChemAxon
    Rule of FiveNoChemAxon
    Ghose FilterNoChemAxon
    Veber's RuleNoChemAxon
    MDDR-like RuleYesChemAxon
    HMDB IDNot Available
    DrugBank IDNot Available
    Phenol Explorer Compound IDNot Available
    FoodDB IDNot Available
    KNApSAcK IDNot Available
    Chemspider IDNot Available
    KEGG Compound IDNot Available
    BioCyc IDNot Available
    BiGG IDNot Available
    Wikipedia LinkNot Available
    METLIN IDNot Available
    PubChem Compound146682472
    PDB IDNot Available
    ChEBI IDNot Available
    Good Scents IDNot Available
    References
    General References
    1. Dai Y, Wang YH, An Y, Lu C, Zhang HH, Fan XT, Wei PH, Ren LK, Shan YZ, Zhao GG: [Observation of efficacy and safety of stereotactic-EEG-guided three-dimensional radiofrequency thermocoagulation for the treatment of drug-resistant insular epilepsy]. Zhonghua Yi Xue Za Zhi. 2021 Nov 9;101(41):3386-3392. doi: 10.3760/cma.j.cn112137-20210505-01057. [PubMed:34758541 ]
    2. Ren SQ, Wei Y, Wang YQ, Ou Y, Wang Q, Feng HL, Luo C, Nie Y, Lyu Q, Fan SD, Zhou F, Chen ZJ, Zhong S, Tian JZ, Wang D: [Comparison of single incision robot-assisted laparoscopic radical prostatectomy with and without extraperitoneal special channel device]. Zhonghua Yi Xue Za Zhi. 2021 Nov 2;101(40):3345-3350. doi: 10.3760/cma.j.cn112137-20210303-00545. [PubMed:34758536 ]
    3. Khosravi M: A Possible Type IV Hypersensitivity Reaction to Older Antiepileptic Drugs During and After Recovery from COVID-19 Infection. Pharmacopsychiatry. 2021 Nov 10. doi: 10.1055/a-1678-7429. [PubMed:34758492 ]
    4. She X, Berger TW, Song D: A Double-Layer, Multi-Resolution Classification Model for Decoding Spatiotemporal Patterns of Spikes with Small Sample Size. Neural Comput. 2021 Nov 4:1-36. doi: 10.1162/neco_a_01459. [PubMed:34758485 ]
    5. Gottlieb M, Eys M, Hardy J, Benson AJ: Valued Insight or Act of Insubordination? How Context Shapes Coaches' Perceptions of Challenge-Oriented Followership. J Sport Exerc Psychol. 2021 Nov 10:1-9. doi: 10.1123/jsep.2021-0122. [PubMed:34758456 ]
    6. Causa R, Almagro-Nievas D, Rivera-Izquierdo M, Benitez-Munoz N, Lopez-Hernandez B, Garcia-Garcia F, Alvarez-Estevez M, Soto-Perez MO, Bermudez-Tamayo C: Antibody Response 3 Months after 2 Doses of BNT162b2 mRNA COVID-19 Vaccine in Residents of Long-Term Care Facilities. Gerontology. 2021 Nov 10:1-7. doi: 10.1159/000519711. [PubMed:34758461 ]
    7. Raiesi O, Hashemi SJ, Yarahmadi M, Getso MI, Raissi V, Amiri S, Borjian Boroujeni Z: Allergic fungal rhinosinusitis caused by Neoscytalidium dimidiatum: A case report: Allergic fungal rhinosinusitis due to Neoscytalidium dimidiatum. J Mycol Med. 2022 Mar;32(1):101212. doi: 10.1016/j.mycmed.2021.101212. Epub 2021 Oct 12. [PubMed:34758426 ]
    8. O'Donnell KL, Pinski AN, Clancy CS, Gourdine T, Shifflett K, Fletcher P, Messaoudi I, Marzi A: Pathogenic and transcriptomic differences of emerging SARS-CoV-2 variants in the Syrian golden hamster model. EBioMedicine. 2021 Nov;73:103675. doi: 10.1016/j.ebiom.2021.103675. Epub 2021 Nov 7. [PubMed:34758415 ]
    9. Ramirez-Ramirez JA, Madrigal Y, Alzate JF, Pabon-Mora N: Evolution and expression of the MADS-box flowering transition genes AGAMOUS-like 24/SHORT VEGETATIVE PHASE with emphasis in selected Neotropical orchids. Cells Dev. 2021 Nov 8:203755. doi: 10.1016/j.cdev.2021.203755. [PubMed:34758403 ]
    10. Jian MJ, Chung HY, Chang CK, Lin JC, Yeh KM, Chen CW, Lin DY, Chang FY, Hung KS, Perng CL, Shang HS: SARS-CoV-2 variants with T135I nucleocapsid mutations may affect antigen test performance. Int J Infect Dis. 2022 Jan;114:112-114. doi: 10.1016/j.ijid.2021.11.006. Epub 2021 Nov 7. [PubMed:34758391 ]
    11. Farooq MA, Islam F, Ayyaz A, Chen W, Noor Y, Hu W, Hannan F, Zhou W: Mitigation effects of exogenous melatonin-selenium nanoparticles on arsenic-induced stress in Brassica napus. Environ Pollut. 2022 Jan 1;292(Pt B):118473. doi: 10.1016/j.envpol.2021.118473. Epub 2021 Nov 7. [PubMed:34758366 ]
    12. Orr B, De Sousa F, Gomes AM, Afonso O, Ferreira LT, Figueiredo AC, Maiato H: An anaphase surveillance mechanism prevents micronuclei formation from frequent chromosome segregation errors. Cell Rep. 2021 Nov 9;37(6):109783. doi: 10.1016/j.celrep.2021.109783. [PubMed:34758324 ]
    13. Papini D, Levasseur MD, Higgins JMG: The Aurora B gradient sustains kinetochore stability in anaphase. Cell Rep. 2021 Nov 9;37(6):109818. doi: 10.1016/j.celrep.2021.109818. [PubMed:34758321 ]
    14. Yewdell WT, Smolkin RM, Belcheva KT, Mendoza A, Michaels AJ, Cols M, Angeletti D, Yewdell JW, Chaudhuri J: Temporal dynamics of persistent germinal centers and memory B cell differentiation following respiratory virus infection. Cell Rep. 2021 Nov 9;37(6):109961. doi: 10.1016/j.celrep.2021.109961. [PubMed:34758310 ]
    15. Lee K, Park OS, Go JY, Yu J, Han JH, Kim J, Bae S, Jung YJ, Seo PJ: Arabidopsis ATXR2 represses de novo shoot organogenesis in the transition from callus to shoot formation. Cell Rep. 2021 Nov 9;37(6):109980. doi: 10.1016/j.celrep.2021.109980. [PubMed:34758306 ]
    16. Liefeng Ma et al. (2019). Bioassay-guided isolation of lanostane-type triterpenoids as α-glucosidase inhibitors from Ganoderma hainanense. Phytochemistry Letters 29:154-159, February 2019. DOI: 10.1016/j.phytol.2018.12.007. Phytochemistry Letters.