Np mrd loader

Record Information
Version1.0
Created at2021-11-12 23:50:56 UTC
Updated at2021-11-26 17:45:36 UTC
NP-MRD IDNP0044115
Secondary Accession NumbersNone
Natural Product Identification
Common NameEupatolide
DescriptionEupatolide belongs to the class of organic compounds known as germacranolides and derivatives. These are sesquiterpene lactones with a structure based on the germacranolide skeleton, characterized by a gamma lactone fused to a 1,7-dimethylcyclodec-1-ene moiety. Eupatolide is found in Cassinia aculeata, Cassinia subtropica, Eupatorium cannabinum , Eupatorium formosanum, Eupatorium glehni, Eupatorium glehnii, Helianthus agrophyllus, Helianthus argophyllus, Hilianthus annuus, Inula japonica, Inula salsoloides, Pentanema britannicum, Rhodanthe floribunda, Stevia alpina var. glutinosa and Viguiera hypargyrea. It was first documented in 2016 (PMID: 27452450). Based on a literature review a significant number of articles have been published on eupatolide (PMID: 33091599) (PMID: 32516579) (PMID: 31417401) (PMID: 29809196).
Structure
Thumb
Synonyms
ValueSource
EupatolidChEBI
8beta-Hydroxy-costunolideMeSH
Chemical FormulaC15H20O3
Average Mass248.3220 Da
Monoisotopic Mass248.14124 Da
IUPAC Name(3aR,4R,11aR)-4-hydroxy-6,10-dimethyl-3-methylidene-2H,3H,3aH,4H,5H,8H,9H,11aH-cyclodeca[b]furan-2-one
Traditional Nameeupatolide
CAS Registry NumberNot Available
SMILES
[H][C@]12OC(=O)C(=C)[C@]1([H])[C@H](O)C\C(C)=C\CC\C(C)=C\2
InChI Identifier
InChI=1S/C15H20O3/c1-9-5-4-6-10(2)8-13-14(12(16)7-9)11(3)15(17)18-13/h5,8,12-14,16H,3-4,6-7H2,1-2H3/b9-5+,10-8+/t12-,13-,14-/m1/s1
InChI KeyPDEJECFRCJOMEN-OURLZOILSA-N
Experimental Spectra
Spectrum TypeDescriptionDepositor EmailDepositor OrganizationDepositorDeposition DateView
1D NMR13C NMR Spectrum (1D, 50 MHz, Dimethylsulfoxide-d6, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 150 MHz, Dimethylsulfoxide-d6, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 250 MHz, Dimethylsulfoxide-d6, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 175 MHz, Dimethylsulfoxide-d6, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 75 MHz, Dimethylsulfoxide-d6, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 100 MHz, Dimethylsulfoxide-d6, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 225 MHz, Dimethylsulfoxide-d6, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 200 MHz, Dimethylsulfoxide-d6, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 125 MHz, Dimethylsulfoxide-d6, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 25 MHz, Dimethylsulfoxide-d6, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 50 MHz, Pyridine-d5, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 150 MHz, Pyridine-d5, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 250 MHz, Pyridine-d5, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 175 MHz, Pyridine-d5, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 75 MHz, Pyridine-d5, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 100 MHz, Pyridine-d5, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 225 MHz, Pyridine-d5, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 200 MHz, Pyridine-d5, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 125 MHz, Pyridine-d5, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 25 MHz, Pyridine-d5, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 300 MHz, Dimethylsulfoxide-d6, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 900 MHz, Dimethylsulfoxide-d6, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 700 MHz, Dimethylsulfoxide-d6, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 400 MHz, Dimethylsulfoxide-d6, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 100 MHz, Dimethylsulfoxide-d6, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 500 MHz, Dimethylsulfoxide-d6, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 1000 MHz, Dimethylsulfoxide-d6, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 800 MHz, Dimethylsulfoxide-d6, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 200 MHz, Dimethylsulfoxide-d6, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 600 MHz, Dimethylsulfoxide-d6, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 300 MHz, Pyridine-d5, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 900 MHz, Pyridine-d5, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 700 MHz, Pyridine-d5, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 400 MHz, Pyridine-d5, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 100 MHz, Pyridine-d5, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 500 MHz, Pyridine-d5, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 1000 MHz, Pyridine-d5, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 800 MHz, Pyridine-d5, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 200 MHz, Pyridine-d5, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 600 MHz, Pyridine-d5, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
Predicted Spectra
Not Available
Chemical Shift Submissions
Not Available
Species
Species of Origin
Species NameSourceReference
Cassinia aculeataLOTUS Database
Cassinia subtropicaLOTUS Database
Eupatorium cannabinumPlant
Eupatorium formosanumPlant
Eupatorium glehniLOTUS Database
Eupatorium glehniiPlant
Helianthus agrophyllusPlant
Helianthus argophyllusLOTUS Database
Hilianthus annuus-
Inula japonicaLOTUS Database
Inula salsoloidesLOTUS Database
Pentanema britannicumLOTUS Database
Rhodanthe floribundaLOTUS Database
Stevia alpina var. glutinosaPlant
Viguiera hypargyreaLOTUS Database
Chemical Taxonomy
Description Belongs to the class of organic compounds known as germacranolides and derivatives. These are sesquiterpene lactones with a structure based on the germacranolide skeleton, characterized by a gamma lactone fused to a 1,7-dimethylcyclodec-1-ene moiety.
KingdomOrganic compounds
Super ClassLipids and lipid-like molecules
ClassPrenol lipids
Sub ClassTerpene lactones
Direct ParentGermacranolides and derivatives
Alternative Parents
Substituents
  • Germacranolide
  • Germacrane sesquiterpenoid
  • Sesquiterpenoid
  • Gamma butyrolactone
  • Tetrahydrofuran
  • Enoate ester
  • Alpha,beta-unsaturated carboxylic ester
  • Secondary alcohol
  • Lactone
  • Carboxylic acid ester
  • Oxacycle
  • Monocarboxylic acid or derivatives
  • Carboxylic acid derivative
  • Organoheterocyclic compound
  • Alcohol
  • Organooxygen compound
  • Hydrocarbon derivative
  • Organic oxide
  • Organic oxygen compound
  • Carbonyl group
  • Aliphatic heteropolycyclic compound
Molecular FrameworkAliphatic heteropolycyclic compounds
External Descriptors
Physical Properties
StateNot Available
Experimental Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Predicted Properties
PropertyValueSource
logP2.42ALOGPS
logP2.47ChemAxon
logS-2.5ALOGPS
pKa (Strongest Acidic)14.7ChemAxon
pKa (Strongest Basic)-2.9ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count2ChemAxon
Hydrogen Donor Count1ChemAxon
Polar Surface Area46.53 ŲChemAxon
Rotatable Bond Count0ChemAxon
Refractivity71.52 m³·mol⁻¹ChemAxon
Polarizability26.57 ųChemAxon
Number of Rings2ChemAxon
BioavailabilityYesChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleNoChemAxon
MDDR-like RuleNoChemAxon
HMDB IDNot Available
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FoodDB IDNot Available
KNApSAcK IDC00003277
Chemspider ID4444802
KEGG Compound IDC09440
BioCyc IDCPD-21667
BiGG IDNot Available
Wikipedia LinkNot Available
METLIN IDNot Available
PubChem Compound5281460
PDB IDNot Available
ChEBI ID4935
Good Scents IDrw1531091
References
General References
  1. Wu XD, Ding LF, Tu WC, Yang H, Su J, Peng LY, Li Y, Zhao QS: Bioactive sesquiterpenoids from the flowers of Inula japonica. Phytochemistry. 2016 Sep;129:68-76. doi: 10.1016/j.phytochem.2016.07.008. Epub 2016 Jul 21. [PubMed:27452450 ]
  2. Ma X, Wu K, Xu A, Jiao P, Li H, Xing L: The sesquiterpene lactone eupatolide induces apoptosis in non-small cell lung cancer cells by suppressing STAT3 signaling. Environ Toxicol Pharmacol. 2021 Jan;81:103513. doi: 10.1016/j.etap.2020.103513. Epub 2020 Oct 20. [PubMed:33091599 ]
  3. Frey M, Klaiber I, Conrad J, Spring O: CYP71BL9, the missing link in costunolide synthesis of sunflower. Phytochemistry. 2020 Sep;177:112430. doi: 10.1016/j.phytochem.2020.112430. Epub 2020 Jun 6. [PubMed:32516579 ]
  4. Avila-Carrasco L, Majano P, Sanchez-Tomero JA, Selgas R, Lopez-Cabrera M, Aguilera A, Gonzalez Mateo G: Natural Plants Compounds as Modulators of Epithelial-to-Mesenchymal Transition. Front Pharmacol. 2019 Jul 30;10:715. doi: 10.3389/fphar.2019.00715. eCollection 2019. [PubMed:31417401 ]
  5. Boldbaatar A, Lee S, Han S, Jeong AL, Ka HI, Buyanravjikh S, Lee JH, Lim JS, Lee MS, Yang Y: Erratum: Eupatolide inhibits the TGF-beta1-induced migration of breast cancer cells via downregulation of SMAD3 phosphorylation and transcriptional repression of ALK5. Oncol Lett. 2018 Jun;15(6):8885. doi: 10.3892/ol.2018.8427. Epub 2018 Apr 4. [PubMed:29809196 ]