Np mrd loader

Record Information
Version1.0
Created at2021-06-21 00:26:11 UTC
Updated at2021-06-30 00:18:15 UTC
NP-MRD IDNP0042882
Secondary Accession NumbersNone
Natural Product Identification
Common Nametandyukisin
Provided ByJEOL DatabaseJEOL Logo
DescriptionTandyukisin A belongs to the class of organic compounds known as fatty acid methyl esters. Fatty acid methyl esters are compounds containing a fatty acid that is esterified with a methyl group. They have the general structure RC(=O)OR', where R=fatty aliphatic tail or organyl group and R'=methyl group. tandyukisin is found in Trichoderma harzianum. It was first documented in 2021 (PMID: 34125202). Based on a literature review a significant number of articles have been published on tandyukisin A (PMID: 34122252) (PMID: 34100190) (PMID: 34098671) (PMID: 34098168) (PMID: 34092268) (PMID: 34077866).
Structure
Thumb
SynonymsNot Available
Chemical FormulaC26H38O7
Average Mass462.5830 Da
Monoisotopic Mass462.26175 Da
IUPAC Name(1S,2R,4R,4aS,5S,6S,8aR)-1-hydroxy-5-[(2Z)-3-hydroxyprop-2-enoyl]-4,5-dimethyl-6-(2-methylpropyl)-1,2,3,4,4a,5,6,8a-octahydronaphthalen-2-yl 5-methyl (2E)-3-methylpent-2-enedioate
Traditional Name(1S,2R,4R,4aS,5S,6S,8aR)-1-hydroxy-5-[(2Z)-3-hydroxyprop-2-enoyl]-4,5-dimethyl-6-(2-methylpropyl)-2,3,4,4a,6,8a-hexahydro-1H-naphthalen-2-yl 5-methyl (2E)-3-methylpent-2-enedioate
CAS Registry NumberNot Available
SMILES
[H]O\C([H])=C(\[H])C(=O)[C@@]1(C([H])([H])[H])[C@]([H])(C([H])=C([H])[C@@]2([H])[C@]([H])(O[H])[C@]([H])(OC(=O)C(\[H])=C(/C([H])([H])[H])C([H])([H])C(=O)OC([H])([H])[H])C([H])([H])[C@@]([H])(C([H])([H])[H])[C@]12[H])C([H])([H])C([H])(C([H])([H])[H])C([H])([H])[H]
InChI Identifier
InChI=1S/C26H38O7/c1-15(2)11-18-7-8-19-24(26(18,5)21(28)9-10-27)17(4)14-20(25(19)31)33-23(30)13-16(3)12-22(29)32-6/h7-10,13,15,17-20,24-25,27,31H,11-12,14H2,1-6H3/b10-9-,16-13+/t17-,18-,19-,20-,24+,25+,26-/m1/s1
InChI KeyVSNXRBQFJBRKCU-AZKUIIKHSA-N
Experimental Spectra
Spectrum TypeDescriptionDepositor EmailDepositor OrganizationDepositorDeposition DateView
1D NMR13C NMR Spectrum (1D, 600 MHz, CDCl3, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 600 MHz, CDCl3, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 100 MHz, CDCl3, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 100 MHz, CDCl3, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 200 MHz, CDCl3, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 200 MHz, CDCl3, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 300 MHz, CDCl3, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 300 MHz, CDCl3, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 400 MHz, CDCl3, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 400 MHz, CDCl3, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 500 MHz, CDCl3, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 500 MHz, CDCl3, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 700 MHz, CDCl3, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 700 MHz, CDCl3, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 800 MHz, CDCl3, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 800 MHz, CDCl3, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 900 MHz, CDCl3, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 900 MHz, CDCl3, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 1000 MHz, CDCl3, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 1000 MHz, CDCl3, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
Predicted Spectra
Spectrum TypeDescriptionDepositor IDDepositor OrganizationDepositorDeposition DateView
1D NMR13C NMR Spectrum (1D, 100 MHz, chcl3, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 125 MHz, chcl3, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 150 MHz, chcl3, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 175 MHz, chcl3, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 200 MHz, chcl3, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 225 MHz, chcl3, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 25 MHz, chcl3, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 250 MHz, chcl3, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 50 MHz, chcl3, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 75 MHz, chcl3, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 100 MHz, chcl3, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 1000 MHz, chcl3, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 200 MHz, chcl3, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 300 MHz, chcl3, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 400 MHz, chcl3, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 500 MHz, chcl3, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 600 MHz, chcl3, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 700 MHz, chcl3, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 800 MHz, chcl3, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 900 MHz, chcl3, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
Chemical Shift Submissions
Not Available
Species
Species of Origin
Species NameSourceReference
Trichoderma harzianumJEOL database
    • Yamada, T., et al. J. Tetrahedron Lett. 55, 662 (2014)
Chemical Taxonomy
Description Belongs to the class of organic compounds known as fatty acid methyl esters. Fatty acid methyl esters are compounds containing a fatty acid that is esterified with a methyl group. They have the general structure RC(=O)OR', where R=fatty aliphatic tail or organyl group and R'=methyl group.
KingdomOrganic compounds
Super ClassLipids and lipid-like molecules
ClassFatty Acyls
Sub ClassFatty acid esters
Direct ParentFatty acid methyl esters
Alternative Parents
Substituents
  • Fatty acid methyl ester
  • Dicarboxylic acid or derivatives
  • Vinylogous acid
  • Alpha,beta-unsaturated ketone
  • Alpha,beta-unsaturated carboxylic ester
  • Enoate ester
  • Methyl ester
  • Enone
  • Cyclic alcohol
  • Acryloyl-group
  • Secondary alcohol
  • Ketone
  • Carboxylic acid ester
  • Enol
  • Carboxylic acid derivative
  • Organic oxygen compound
  • Organic oxide
  • Hydrocarbon derivative
  • Organooxygen compound
  • Carbonyl group
  • Alcohol
  • Aliphatic homopolycyclic compound
Molecular FrameworkAliphatic homopolycyclic compounds
External DescriptorsNot Available
Physical Properties
StateNot Available
Experimental Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Predicted Properties
PropertyValueSource
logP2.91ALOGPS
logP4.28ChemAxon
logS-4.5ALOGPS
pKa (Strongest Acidic)9ChemAxon
pKa (Strongest Basic)-3.3ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count5ChemAxon
Hydrogen Donor Count2ChemAxon
Polar Surface Area110.13 ŲChemAxon
Rotatable Bond Count10ChemAxon
Refractivity126.73 m³·mol⁻¹ChemAxon
Polarizability50.92 ųChemAxon
Number of Rings2ChemAxon
BioavailabilityYesChemAxon
Rule of FiveYesChemAxon
Ghose FilterNoChemAxon
Veber's RuleNoChemAxon
MDDR-like RuleNoChemAxon
HMDB IDNot Available
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FoodDB IDNot Available
KNApSAcK IDNot Available
Chemspider ID32033858
KEGG Compound IDNot Available
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkNot Available
METLIN IDNot Available
PubChem Compound76853358
PDB IDNot Available
ChEBI IDNot Available
Good Scents IDNot Available
References
General References
  1. Stevens D, Harrison SL, Kolamunnage-Dona R, Lip GYH, Lane DA: The Atrial Fibrillation Better Care pathway for managing atrial fibrillation: a review. Europace. 2021 Jun 14. pii: 6298528. doi: 10.1093/europace/euab092. [PubMed:34125202 ]
  2. Goldberg AE, Lee C: Accessibility and Historical Change: An Emergent Cluster Led Uncles and Aunts to Become Aunts and Uncles. Front Psychol. 2021 May 26;12:662884. doi: 10.3389/fpsyg.2021.662884. eCollection 2021. [PubMed:34122252 ]
  3. Arumugam S, Abul Asan Sathali MS, Ramaiah S, Krishnan G: Diversification of Dawkinsia filamentosa (Valenciennes, 1844) and their growth conditions by the impact of toxic metals in the river Tamiraparani. Ecotoxicology. 2021 Aug;30(6):1043-1055. doi: 10.1007/s10646-021-02427-0. Epub 2021 Jun 7. [PubMed:34100190 ]
  4. Wang C, Li H, Zhao Y, Cheng R, Shi XX, Gao JH, Ren XY: [Study on the effect of antibiotics application in perioperative period on carotid artery and serum interleukin-6 in periodontitis rats with hyperlipidemia or diabetes]. Zhonghua Kou Qiang Yi Xue Za Zhi. 2021 Jun 9;56(6):557-564. doi: 10.3760/cma.j.cn112144-20210131-00051. [PubMed:34098671 ]
  5. Somfai T, Hirao Y: Vitrification of immature bovine oocytes in protein-free media: The impact of the cryoprotectant treatment protocol, base medium, and ovary storage. Theriogenology. 2021 May 28;172:47-54. doi: 10.1016/j.theriogenology.2021.05.029. [PubMed:34098168 ]
  6. Nehgme V, Rios P, Acevedo V, Alvarez P: Cardiac abnormalities determined by tissue Doppler imaging and arrhythmias in adolescents with anorexia nervosa. Cardiol Young. 2021 Jun 7:1-4. doi: 10.1017/S1047951121001852. [PubMed:34092268 ]
  7. Baker S, Xiang W, Atkinson I: A hybrid neural network for continuous and non-invasive estimation of blood pressure from raw electrocardiogram and photoplethysmogram waveforms. Comput Methods Programs Biomed. 2021 Aug;207:106191. doi: 10.1016/j.cmpb.2021.106191. Epub 2021 May 21. [PubMed:34077866 ]
  8. Cohen CD, De Blasio MJ, Lee MKS, Farrugia GE, Prakoso D, Krstevski C, Deo M, Donner DG, Kiriazis H, Flynn MC, Gaynor TL, Murphy AJ, Drummond GR, Pinto AR, Ritchie RH: Diastolic dysfunction in a pre-clinical model of diabetes is associated with changes in the cardiac non-myocyte cellular composition. Cardiovasc Diabetol. 2021 Jun 1;20(1):116. doi: 10.1186/s12933-021-01303-9. [PubMed:34074290 ]
  9. Lee JH, Kim J, Sun BJ, Jee SJ, Park JH: Effect of Cardiac Rehabilitation on Left Ventricular Diastolic Function in Patients with Acute Myocardial Infarction. J Clin Med. 2021 May 13;10(10). pii: jcm10102088. doi: 10.3390/jcm10102088. [PubMed:34068028 ]
  10. Torres E, Levy PT, El-Khuffash A, Gu H, Hamvas A, Singh GK: Left Ventricle Phenotyping Utilizing Tissue Doppler Imaging in Premature Infants with Varying Severity of Bronchopulmonary Dysplasia. J Clin Med. 2021 May 20;10(10). pii: jcm10102211. doi: 10.3390/jcm10102211. [PubMed:34065264 ]
  11. Yamada, T., et al. (2014). Yamada, T., et al. J. Tetrahedron Lett. 55, 662 (2014). J. Tetrahedron Lett..