| Record Information |
|---|
| Version | 2.0 |
|---|
| Created at | 2021-06-20 21:38:19 UTC |
|---|
| Updated at | 2021-08-20 00:00:38 UTC |
|---|
| NP-MRD ID | NP0039119 |
|---|
| Secondary Accession Numbers | None |
|---|
| Natural Product Identification |
|---|
| Common Name | 10-deacetylbaccatin III, 10-DAB |
|---|
| Provided By | JEOL Database |
|---|
| Description | 10-Deacetylbaccatin III is a primary metabolite. Primary metabolites are metabolically or physiologically essential metabolites. They are directly involved in an organism’s growth, development or reproduction. 10-deacetylbaccatin III, 10-DAB is found in Corylus avellana, Curvularia lunata, Taxus canadensis, Taxus cuspidata , Taxus floridana, Taxus mairei, Taxus media, Taxus wallichiana and Taxus yunnanensis. 10-deacetylbaccatin III, 10-DAB was first documented in 2017 (PMID: 29552048). Based on a literature review a significant number of articles have been published on 10-deacetylbaccatin III (PMID: 34058663) (PMID: 33273486) (PMID: 33088661) (PMID: 32128278) (PMID: 31506091) (PMID: 31119478). |
|---|
| Structure | [H]O[C@]1([H])C(=C2[C@@]([H])(O[H])C(=O)[C@]3(C([H])([H])[H])[C@@]([H])(O[H])C([H])([H])[C@@]4([H])OC([H])([H])[C@@]4(OC(=O)C([H])([H])[H])[C@@]3([H])[C@]([H])(OC(=O)C3=C([H])C([H])=C([H])C([H])=C3[H])[C@](O[H])(C1([H])[H])C2(C([H])([H])[H])C([H])([H])[H])C([H])([H])[H] InChI=1S/C29H36O10/c1-14-17(31)12-29(36)24(38-25(35)16-9-7-6-8-10-16)22-27(5,23(34)21(33)20(14)26(29,3)4)18(32)11-19-28(22,13-37-19)39-15(2)30/h6-10,17-19,21-22,24,31-33,36H,11-13H2,1-5H3/t17-,18-,19+,21+,22-,24-,27+,28-,29+/m0/s1 |
|---|
| Synonyms | | Value | Source |
|---|
| 10-Deacetylbaccatine III | ChEMBL, MeSH | | 10-Deacetyl-baccatine III | MeSH | | 10-DB III | MeSH |
|
|---|
| Chemical Formula | C29H36O10 |
|---|
| Average Mass | 544.5901 Da |
|---|
| Monoisotopic Mass | 544.23085 Da |
|---|
| IUPAC Name | (1S,2S,3R,4S,7R,9S,10S,12R,15S)-4-(acetyloxy)-1,9,12,15-tetrahydroxy-10,14,17,17-tetramethyl-11-oxo-6-oxatetracyclo[11.3.1.0^{3,10}.0^{4,7}]heptadec-13-en-2-yl benzoate |
|---|
| Traditional Name | (1S,2S,3R,4S,7R,9S,10S,12R,15S)-4-(acetyloxy)-1,9,12,15-tetrahydroxy-10,14,17,17-tetramethyl-11-oxo-6-oxatetracyclo[11.3.1.0^{3,10}.0^{4,7}]heptadec-13-en-2-yl benzoate |
|---|
| CAS Registry Number | Not Available |
|---|
| SMILES | [H]O[C@]1([H])C(=C2[C@@]([H])(O[H])C(=O)[C@]3(C([H])([H])[H])[C@@]([H])(O[H])C([H])([H])[C@@]4([H])OC([H])([H])[C@@]4(OC(=O)C([H])([H])[H])[C@@]3([H])[C@]([H])(OC(=O)C3=C([H])C([H])=C([H])C([H])=C3[H])[C@](O[H])(C1([H])[H])C2(C([H])([H])[H])C([H])([H])[H])C([H])([H])[H] |
|---|
| InChI Identifier | InChI=1S/C29H36O10/c1-14-17(31)12-29(36)24(38-25(35)16-9-7-6-8-10-16)22-27(5,23(34)21(33)20(14)26(29,3)4)18(32)11-19-28(22,13-37-19)39-15(2)30/h6-10,17-19,21-22,24,31-33,36H,11-13H2,1-5H3/t17-,18-,19+,21+,22-,24-,27+,28-,29+/m0/s1 |
|---|
| InChI Key | YWLXLRUDGLRYDR-ZHPRIASZSA-N |
|---|
| Experimental Spectra |
|---|
|
| | Spectrum Type | Description | Depositor Email | Depositor Organization | Depositor | Deposition Date | View |
|---|
| 1D NMR | 13C NMR Spectrum (1D, 500 MHz, CDCl3, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 500 MHz, CDCl3, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 100 MHz, CDCl3, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 100 MHz, CDCl3, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 200 MHz, CDCl3, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 200 MHz, CDCl3, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 300 MHz, CDCl3, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 300 MHz, CDCl3, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 400 MHz, CDCl3, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 400 MHz, CDCl3, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 600 MHz, CDCl3, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 600 MHz, CDCl3, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 700 MHz, CDCl3, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 700 MHz, CDCl3, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 800 MHz, CDCl3, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 800 MHz, CDCl3, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 900 MHz, CDCl3, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 900 MHz, CDCl3, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 1000 MHz, CDCl3, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 1000 MHz, CDCl3, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum |
| | Predicted Spectra |
|---|
|
| Not Available | | Chemical Shift Submissions |
|---|
|
| Not Available | | Species |
|---|
| Species of Origin | |
|---|
| Chemical Taxonomy |
|---|
| Description | This compound belongs to the class of organic compounds known as taxanes and derivatives. These are diterpenoids with a structure based either on the taxane skeleton, or a derivative thereof. In term of phytochemistry, several derivatives of the taxane skeleton exist: 2(3->20)-Abeotaxane, 3,11-cyclotaxane, 11(15->1),11(10->9)-abeotaxane, 3,8-seco-taxane, and 11(15->1)-abeotaxane, among others. More complex skeletons have been found recently, which include the taxane-derived [3.3.3] Propellane ring system. |
|---|
| Kingdom | Organic compounds |
|---|
| Super Class | Lipids and lipid-like molecules |
|---|
| Class | Prenol lipids |
|---|
| Sub Class | Diterpenoids |
|---|
| Direct Parent | Taxanes and derivatives |
|---|
| Alternative Parents | |
|---|
| Substituents | - Taxane diterpenoid
- Benzoate ester
- Benzoic acid or derivatives
- Benzoyl
- Monocyclic benzene moiety
- Benzenoid
- Dicarboxylic acid or derivatives
- Cyclic alcohol
- Tertiary alcohol
- Carboxylic acid ester
- Secondary alcohol
- Ketone
- Oxetane
- Ether
- Dialkyl ether
- Organoheterocyclic compound
- Carboxylic acid derivative
- Oxacycle
- Polyol
- Alcohol
- Carbonyl group
- Hydrocarbon derivative
- Organic oxygen compound
- Organooxygen compound
- Organic oxide
- Aromatic heteropolycyclic compound
|
|---|
| Molecular Framework | Aromatic heteropolycyclic compounds |
|---|
| External Descriptors | |
|---|
| Physical Properties |
|---|
| State | Not Available |
|---|
| Experimental Properties | |
|---|
| Predicted Properties | |
|---|
| General References | - Ren S, Zhang M, Wang Y, Guo J, Wang J, Li Y, Ding N: Synthesis and biological evaluation of novel cabazitaxel analogues. Bioorg Med Chem. 2021 Jul 1;41:116224. doi: 10.1016/j.bmc.2021.116224. Epub 2021 May 23. [PubMed:34058663 ]
- Chakravarthi BVSK, Singh S, Kamalraj S, Gupta VK, Jayabaskaran C: Evaluation of spore inoculum and confirmation of pathway genetic blueprint of T13alphaH and DBAT from a Taxol-producing endophytic fungus. Sci Rep. 2020 Dec 3;10(1):21139. doi: 10.1038/s41598-020-77605-x. [PubMed:33273486 ]
- Sah B, Kumari M, Subban K, Chelliah J: Evaluation of the anticancer activity of enzymatically synthesized Baccatin III: an intermediate precursor of Taxol(R). 3 Biotech. 2020 Nov;10(11):465. doi: 10.1007/s13205-020-02457-1. Epub 2020 Oct 8. [PubMed:33088661 ]
- Toghueo RMK: Bioprospecting endophytic fungi from Fusarium genus as sources of bioactive metabolites. Mycology. 2019 Jul 31;11(1):1-21. doi: 10.1080/21501203.2019.1645053. eCollection 2020. [PubMed:32128278 ]
- Liu HL, Chang JJ, Thia C, Lin YJ, Lo SC, Huang CC, Li WH: Characterizing an engineered carotenoid-producing yeast as an anti-stress chassis for building cell factories. Microb Cell Fact. 2019 Sep 10;18(1):155. doi: 10.1186/s12934-019-1205-y. [PubMed:31506091 ]
- You LF, Wei T, Zheng QW, Jiang BH, Lin JF, Guo LQ: Optimization of Baccatin III Production by Cross-Linked Enzyme Aggregate of Taxoid 10beta-O-Acetyltransferase. Mol Biotechnol. 2019 Jul;61(7):498-505. doi: 10.1007/s12033-019-00179-1. [PubMed:31119478 ]
- Sah B, Subban K, Jayabaskaran C: Biochemical insights into the recombinant 10-deacetylbaccatin III-10-beta-O-acetyltransferase enzyme from the Taxol-producing endophytic fungus Lasiodiplodia theobromae. FEMS Microbiol Lett. 2019 Apr 1;366(7). pii: 5435445. doi: 10.1093/femsle/fnz072. [PubMed:31062024 ]
- Li BJ, Wang H, Gong T, Chen JJ, Chen TJ, Yang JL, Zhu P: Author Correction: Improving 10-deacetylbaccatin III-10-beta-O-acetyltransferase catalytic fitness for Taxol production. Nat Commun. 2018 Jul 13;9:16221. doi: 10.1038/ncomms16221. [PubMed:30004093 ]
- You LF, Huang JJ, Wei T, Lin SL, Jiang BH, Guo LQ, Lin JF: Enhanced catalytic activities and modified substrate preferences for taxoid 10beta-O-acetyl transferase mutants by engineering catalytic histidine residues. Biotechnol Lett. 2018 Aug;40(8):1245-1251. doi: 10.1007/s10529-018-2573-9. Epub 2018 Jun 4. [PubMed:29869304 ]
- You LF, Wei T, Zheng QW, Lin JF, Guo LQ, Jiang BH, Huang JJ: Activity Essential Residue Analysis of Taxoid 10beta-O-Acetyl Transferase for Enzymatic Synthesis of Baccatin. Appl Biochem Biotechnol. 2018 Dec;186(4):949-959. doi: 10.1007/s12010-018-2789-0. Epub 2018 May 25. [PubMed:29797298 ]
- Lin SL, Wei T, Lin JF, Guo LQ, Wu GP, Wei JB, Huang JJ, Ouyang PL: Bio-production of Baccatin III, an Important Precursor of Paclitaxel by a Cost-Effective Approach. Mol Biotechnol. 2018 Jul;60(7):492-505. doi: 10.1007/s12033-018-0090-7. [PubMed:29796788 ]
- Miao LY, Mo XC, Xi XY, Zhou L, De G, Ke YS, Liu P, Song FJ, Jin WW, Zhang P: Transcriptome analysis of a taxol-producing endophytic fungus Cladosporium cladosporioides MD2. AMB Express. 2018 Mar 19;8(1):41. doi: 10.1186/s13568-018-0567-6. [PubMed:29556854 ]
- Shirshekanb M, Rezadoost H, Javanbakht M, Ghassempour AR: The Combination Process for Preparative Separation and Purification of Paclitaxel and 10-Deacetylbaccatin III Using Diaion(R) Hp-20 Followed by Hydrophilic Interaction Based Solid Phase Extraction. Iran J Pharm Res. 2017 Fall;16(4):1396-1404. [PubMed:29552048 ]
- Amone, A., et al. (2009). Amone, A., et al, J. Nat. Prod. 72, 2000 (2009). J. Nat. Prod..
|
|---|