Np mrd loader

Record Information
Version2.0
Created at2021-06-19 22:35:09 UTC
Updated at2021-08-20 00:00:24 UTC
NP-MRD IDNP0031529
Secondary Accession NumbersNone
Natural Product Identification
Common Nameflavonol
Provided ByJEOL DatabaseJEOL Logo
Description3-Hydroxyflavone, also known as flavon-3-ol or 3,4-flavandione, belongs to the class of organic compounds known as flavonols. Flavonols are compounds that contain a flavone (2-phenyl-1-benzopyran-4-one) backbone carrying a hydroxyl group at the 3-position. 3-Hydroxyflavone is found, on average, in the highest concentration within papayas (Carica papaya). 3-Hydroxyflavone has also been detected, but not quantified in, several different foods, such as teas (Camellia sinensis), fenugreeks (Trigonella foenum-graecum), brassicas, pomegranates (Punica granatum), and red tea. This could make 3-hydroxyflavone a potential biomarker for the consumption of these foods. 3-Hydroxyflavone is a primary metabolite. Primary metabolites are metabolically or physiologically essential metabolites. They are directly involved in an organism’s growth, development or reproduction. flavonol is found in Acacia rigens and Chrysanthemum morifolium. flavonol was first documented in 2020 (PMID: 33856683). Based on a literature review a significant number of articles have been published on 3-Hydroxyflavone (PMID: 34241028) (PMID: 34171512) (PMID: 34169724) (PMID: 34165983) (PMID: 34109341) (PMID: 34003004).
Structure
Thumb
Synonyms
ValueSource
3-Hydroxy-2-phenyl-4H-1-benzopyran-4-oneChEBI
3-Hydroxy-2-phenylchromoneChEBI
Flavon-3-olChEBI
3,4-FlavandioneHMDB
3-Hydroxy-2-phenyl-4H-1-benzopyran-4-one, 9ciHMDB
FlavonolsHMDB
3-HydroxyflavoneChEBI
FlavonolMeSH
Chemical FormulaC15H10O3
Average Mass238.2381 Da
Monoisotopic Mass238.06299 Da
IUPAC Name3-hydroxy-2-phenyl-4H-chromen-4-one
Traditional Nameflavonol
CAS Registry NumberNot Available
SMILES
[H]OC1=C(OC2=C(C([H])=C([H])C([H])=C2[H])C1=O)C1=C([H])C([H])=C([H])C([H])=C1[H]
InChI Identifier
InChI=1S/C15H10O3/c16-13-11-8-4-5-9-12(11)18-15(14(13)17)10-6-2-1-3-7-10/h1-9,17H
InChI KeyHVQAJTFOCKOKIN-UHFFFAOYSA-N
Experimental Spectra
Spectrum TypeDescriptionDepositor EmailDepositor OrganizationDepositorDeposition DateView
1D NMR13C NMR Spectrum (1D, 400 MHz, DMSO-d6, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 400 MHz, DMSO-d6, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 600 MHz, Acetone-d6, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 151 MHz, Acetone-d6, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 100 MHz, DMSO-d6, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 100 MHz, DMSO-d6, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 200 MHz, DMSO-d6, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 200 MHz, DMSO-d6, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 300 MHz, DMSO-d6, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 300 MHz, DMSO-d6, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 500 MHz, DMSO-d6, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 500 MHz, DMSO-d6, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 600 MHz, DMSO-d6, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 600 MHz, DMSO-d6, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 700 MHz, DMSO-d6, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 700 MHz, DMSO-d6, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 800 MHz, DMSO-d6, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 800 MHz, DMSO-d6, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 900 MHz, DMSO-d6, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 900 MHz, DMSO-d6, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 1000 MHz, DMSO-d6, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 1000 MHz, DMSO-d6, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
Predicted Spectra
Spectrum TypeDescriptionDepositor IDDepositor OrganizationDepositorDeposition DateView
1D NMR13C NMR Spectrum (1D, 50 MHz, acetone, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 150 MHz, acetone, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 250 MHz, acetone, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 175 MHz, acetone, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 75 MHz, acetone, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 100 MHz, acetone, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 225 MHz, acetone, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 200 MHz, acetone, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 125 MHz, acetone, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 25 MHz, acetone, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 300 MHz, acetone, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 900 MHz, acetone, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 700 MHz, acetone, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 400 MHz, acetone, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 100 MHz, acetone, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 500 MHz, acetone, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 1000 MHz, acetone, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 800 MHz, acetone, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 200 MHz, acetone, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 600 MHz, acetone, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
Chemical Shift Submissions
Not Available
Species
Species of Origin
Species NameSourceReference
Acacia rigensLOTUS Database
Chrysanthemum morifoliumLOTUS Database
Taxus chinensisKNApSAcK Database
Chemical Taxonomy
Description Belongs to the class of organic compounds known as flavonols. Flavonols are compounds that contain a flavone (2-phenyl-1-benzopyran-4-one) backbone carrying a hydroxyl group at the 3-position.
KingdomOrganic compounds
Super ClassPhenylpropanoids and polyketides
ClassFlavonoids
Sub ClassFlavones
Direct ParentFlavonols
Alternative ParentsNot Available
SubstituentsNot Available
Molecular FrameworkAromatic heteropolycyclic compounds
External DescriptorsNot Available
Physical Properties
StateNot Available
Experimental Properties
PropertyValueReference
Melting Point171.00 °C. @ 760.00 mm HgThe Good Scents Company Information System
Boiling Point393.72 °C. @ 760.00 mm Hg (est)The Good Scents Company Information System
Water Solubility158.1 mg/L @ 25 °C (est)The Good Scents Company Information System
LogP3.477 (est)The Good Scents Company Information System
Predicted Properties
PropertyValueSource
logP2.55ALOGPS
logP2.72ChemAxon
logS-3.2ALOGPS
pKa (Strongest Acidic)9.29ChemAxon
pKa (Strongest Basic)-3.7ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count3ChemAxon
Hydrogen Donor Count1ChemAxon
Polar Surface Area46.53 ŲChemAxon
Rotatable Bond Count1ChemAxon
Refractivity68.94 m³·mol⁻¹ChemAxon
Polarizability24.61 ųChemAxon
Number of Rings3ChemAxon
BioavailabilityYesChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleNoChemAxon
MDDR-like RuleNoChemAxon
HMDB IDHMDB0031816
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FoodDB IDFDB008491
KNApSAcK IDC00052681
Chemspider ID10871
KEGG Compound IDC01495
BioCyc IDCPD-3261
BiGG IDNot Available
Wikipedia Link3-hydroxyflavone
METLIN IDNot Available
PubChem Compound11349
PDB IDNot Available
ChEBI ID5078
Good Scents IDrw1190681
References
General References
  1. Nottoli M, Bondanza M, Lipparini F, Mennucci B: An enhanced sampling QM/AMOEBA approach: The case of the excited state intramolecular proton transfer in solvated 3-hydroxyflavone. J Chem Phys. 2021 May 14;154(18):184107. doi: 10.1063/5.0046844. [PubMed:34241028 ]
  2. Saito Y, Taniguchi Y, Hirazawa S, Miura Y, Tsurimoto H, Nakayoshi T, Oda A, Hamel E, Yamashita K, Goto M, Nakagawa-Goto K: Effects of substituent pattern on the intracellular target of antiproliferative benzo[b]thiophenyl chromone derivatives. Eur J Med Chem. 2021 Oct 15;222:113578. doi: 10.1016/j.ejmech.2021.113578. Epub 2021 May 25. [PubMed:34171512 ]
  3. Lu K, Cheng Y, Li Y, Li W, Zeng R, Song Y: Phytochemical Flavone Confers Broad-Spectrum Tolerance to Insecticides in Spodoptera litura by Activating ROS/CncC-Mediated Xenobiotic Detoxification Pathways. J Agric Food Chem. 2021 Jul 7;69(26):7429-7445. doi: 10.1021/acs.jafc.1c02695. Epub 2021 Jun 25. [PubMed:34169724 ]
  4. Li Y, Siddique F, Aquino AJA, Lischka H: Molecular Dynamics Simulation of the Excited-State Proton Transfer Mechanism in 3-Hydroxyflavone Using Explicit Hydration Models. J Phys Chem A. 2021 Jul 8;125(26):5765-5778. doi: 10.1021/acs.jpca.1c03687. Epub 2021 Jun 24. [PubMed:34165983 ]
  5. Mikaliunaite L, Green DB: Using a 3-hydroxyflavone derivative as a fluorescent probe for the indirect determination of aminothiols separated by ion-pair HPLC. Anal Methods. 2021 Jul 14;13(26):2915-2925. doi: 10.1039/d1ay00499a. Epub 2021 Jun 10. [PubMed:34109341 ]
  6. Miyabayashi H, Fujii K, Watanabe T, Matano Y, Endo T, Kimura Y: Excited-State Intramolecular Proton Transfer Reaction and Ground-State Hole Dynamics of 4'-N,N-Dialkylamino-3-hydroxyflavone in Ionic Liquids Studied by Transient Absorption Spectroscopy. J Phys Chem B. 2021 May 27;125(20):5373-5386. doi: 10.1021/acs.jpcb.1c02360. Epub 2021 May 18. [PubMed:34003004 ]
  7. Lazzaroni S, Dondi D, Mezzetti A, Protti S: Correction: Role of solute-solvent hydrogen bonds on the ground state and the excited state proton transfer in 3-hydroxyflavone. A systematic spectrophotometric study. Photochem Photobiol Sci. 2020 Jun;19(6):858-859. doi: 10.1039/d0pp90017f. [PubMed:33856683 ]
  8. Cheng J, Gan G, Shen Z, Gao L, Zhang G, Hu J: Red Light-Triggered Intracellular Carbon Monoxide Release Enables Selective Eradication of MRSA Infection. Angew Chem Int Ed Engl. 2021 Jun 7;60(24):13513-13520. doi: 10.1002/anie.202104024. Epub 2021 May 7. [PubMed:33829616 ]
  9. Das K, Sappati S, Bisht GS, Hazra P: Proton-Coupled Electron Transfer in the Aqueous Nanochannels of Lyotropic Liquid Crystals: Interplay of H-Bonding and Polarity Effects. J Phys Chem Lett. 2021 Mar 18;12(10):2651-2659. doi: 10.1021/acs.jpclett.1c00207. Epub 2021 Mar 10. [PubMed:33689368 ]
  10. Kerdpol K, Daengngern R, Sattayanon C, Namuangruk S, Rungrotmongkol T, Wolschann P, Kungwan N, Hannongbua S: Effect of Water Microsolvation on the Excited-State Proton Transfer of 3-Hydroxyflavone Enclosed in gamma-Cyclodextrin. Molecules. 2021 Feb 5;26(4). pii: molecules26040843. doi: 10.3390/molecules26040843. [PubMed:33562757 ]
  11. Moon, B. -H., et al. (2005). Moon, B. -H., et al, Magn. Reson. Chem. 43, 858 (2005). Mag. Reson. Chem..