Np mrd loader

Record Information
Version2.0
Created at2021-06-19 22:20:45 UTC
Updated at2021-06-29 23:59:37 UTC
NP-MRD IDNP0031191
Secondary Accession NumbersNone
Natural Product Identification
Common Name7-O-methyldaidzein. Isoformononetin
Provided ByJEOL DatabaseJEOL Logo
DescriptionIsoformononetin belongs to the class of organic compounds known as 7-o-methylisoflavones. These are isoflavones with methoxy groups attached to the C7 atom of the isoflavone backbone. Thus, isoformononetin is considered to be a flavonoid. Isoformononetin has been detected, but not quantified in, pulses and soy beans (Glycine max). This could make isoformononetin a potential biomarker for the consumption of these foods. Isoformononetin is a primary metabolite. Primary metabolites are metabolically or physiologically essential metabolites. They are directly involved in an organism’s growth, development or reproduction. 7-O-methyldaidzein. Isoformononetin is found in Butea monosperma, Hedysarum sikkimense, Nocardia species, Ormosia henryi, Oxytropis falcata, Pueraria montana and Taxus yunnanensis. 7-O-methyldaidzein. Isoformononetin was first documented in 2000 (PMID: 11006341). Based on a literature review a small amount of articles have been published on Isoformononetin (PMID: 17707445) (PMID: 11129614) (PMID: 15896369) (PMID: 19598169).
Structure
Thumb
Synonyms
ValueSource
4'-Hydroxy-7-methoxyisoflavoneChEBI
7-O-MethyldaidzeinChEBI
Chemical FormulaC16H12O4
Average Mass268.2641 Da
Monoisotopic Mass268.07356 Da
IUPAC Name3-(4-hydroxyphenyl)-7-methoxy-4H-chromen-4-one
Traditional Nameisoformononetin
CAS Registry NumberNot Available
SMILES
[H]OC1=C([H])C([H])=C(C([H])=C1[H])C1=C([H])OC2=C([H])C(OC([H])([H])[H])=C([H])C([H])=C2C1=O
InChI Identifier
InChI=1S/C16H12O4/c1-19-12-6-7-13-15(8-12)20-9-14(16(13)18)10-2-4-11(17)5-3-10/h2-9,17H,1H3
InChI KeyLNIQZRIHAMVRJA-UHFFFAOYSA-N
Experimental Spectra
Spectrum TypeDescriptionDepositor EmailDepositor OrganizationDepositorDeposition DateView
1D NMR13C NMR Spectrum (1D, 400 MHz, DMSO-d6, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 400 MHz, DMSO-d6, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 100 MHz, DMSO-d6, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 100 MHz, DMSO-d6, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 200 MHz, DMSO-d6, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 200 MHz, DMSO-d6, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 300 MHz, DMSO-d6, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 300 MHz, DMSO-d6, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 500 MHz, DMSO-d6, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 500 MHz, DMSO-d6, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 600 MHz, DMSO-d6, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 600 MHz, DMSO-d6, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 700 MHz, DMSO-d6, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 700 MHz, DMSO-d6, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 800 MHz, DMSO-d6, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 800 MHz, DMSO-d6, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 900 MHz, DMSO-d6, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 900 MHz, DMSO-d6, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 1000 MHz, DMSO-d6, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 1000 MHz, DMSO-d6, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
Predicted Spectra
Not Available
Chemical Shift Submissions
Not Available
Species
Species of Origin
Species NameSourceReference
Butea monospermaLOTUS Database
Glycine maxKNApSAcK Database
Hedysarum sikkimenseLOTUS Database
Machaerium villosumKNApSAcK Database
Nocardia speciesJEOL database
    • Maatooq, G. T., et al, Phytochemistry 66, 1007 (2005)
Ormosia henryiLOTUS Database
Oxytropis falcataLOTUS Database
Pueraria montanaLOTUS Database
Taxus fuanaKNApSAcK Database
Taxus wallichiana var. yunnanensisPlant
Taxus yunnanensisKNApSAcK Database
Chemical Taxonomy
Description Belongs to the class of organic compounds known as 7-o-methylisoflavones. These are isoflavones with methoxy groups attached to the C7 atom of the isoflavone backbone.
KingdomOrganic compounds
Super ClassPhenylpropanoids and polyketides
ClassIsoflavonoids
Sub ClassO-methylated isoflavonoids
Direct Parent7-O-methylisoflavones
Alternative Parents
Substituents
  • 7-o-methylisoflavone
  • Isoflavone
  • Chromone
  • Benzopyran
  • 1-benzopyran
  • Anisole
  • 1-hydroxy-2-unsubstituted benzenoid
  • Alkyl aryl ether
  • Phenol
  • Pyranone
  • Monocyclic benzene moiety
  • Pyran
  • Benzenoid
  • Heteroaromatic compound
  • Ether
  • Oxacycle
  • Organoheterocyclic compound
  • Organic oxygen compound
  • Organooxygen compound
  • Hydrocarbon derivative
  • Organic oxide
  • Aromatic heteropolycyclic compound
Molecular FrameworkAromatic heteropolycyclic compounds
External Descriptors
Physical Properties
StateNot Available
Experimental Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Predicted Properties
PropertyValueSource
logP3.53ALOGPS
logP2.88ChemAxon
logS-3.8ALOGPS
pKa (Strongest Acidic)8.96ChemAxon
pKa (Strongest Basic)-4.7ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count4ChemAxon
Hydrogen Donor Count1ChemAxon
Polar Surface Area55.76 ŲChemAxon
Rotatable Bond Count2ChemAxon
Refractivity74.18 m³·mol⁻¹ChemAxon
Polarizability27.89 ųChemAxon
Number of Rings3ChemAxon
BioavailabilityYesChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleNoChemAxon
MDDR-like RuleNoChemAxon
HMDB IDHMDB0033994
DrugBank IDDB04202
Phenol Explorer Compound IDNot Available
FoodDB IDFDB012228
KNApSAcK IDC00009382
Chemspider ID3632
KEGG Compound IDC12125
BioCyc IDCPD-3343
BiGG IDNot Available
Wikipedia LinkNot Available
METLIN IDNot Available
PubChem Compound3764
PDB IDHMO
ChEBI ID29608
Good Scents IDNot Available
References
General References
  1. Kaimoyo E, VanEtten HD: Inactivation of pea genes by RNAi supports the involvement of two similar O-methyltransferases in the biosynthesis of (+)-pisatin and of chiral intermediates with a configuration opposite that found in (+)-pisatin. Phytochemistry. 2008 Jan;69(1):76-87. doi: 10.1016/j.phytochem.2007.06.013. Epub 2007 Aug 17. [PubMed:17707445 ]
  2. He XZ, Dixon RA: Genetic manipulation of isoflavone 7-O-methyltransferase enhances biosynthesis of 4'-O-methylated isoflavonoid phytoalexins and disease resistance in alfalfa. Plant Cell. 2000 Sep;12(9):1689-702. doi: 10.1105/tpc.12.9.1689. [PubMed:11006341 ]
  3. Akashi T, Sawada Y, Aoki T, Ayabe S: New scheme of the biosynthesis of formononetin involving 2,7,4'-trihydroxyisoflavanone but not daidzein as the methyl acceptor. Biosci Biotechnol Biochem. 2000 Oct;64(10):2276-9. doi: 10.1271/bbb.64.2276. [PubMed:11129614 ]
  4. Maatooq GT, Rosazza JP: Metabolism of daidzein by Nocardia species NRRL 5646 and Mortierella isabellina ATCC 38063. Phytochemistry. 2005 May;66(9):1007-11. doi: 10.1016/j.phytochem.2005.03.013. [PubMed:15896369 ]
  5. Bhargavan B, Gautam AK, Singh D, Kumar A, Chaurasia S, Tyagi AM, Yadav DK, Mishra JS, Singh AB, Sanyal S, Goel A, Maurya R, Chattopadhyay N: Methoxylated isoflavones, cajanin and isoformononetin, have non-estrogenic bone forming effect via differential mitogen activated protein kinase (MAPK) signaling. J Cell Biochem. 2009 Oct 1;108(2):388-99. doi: 10.1002/jcb.22264. [PubMed:19598169 ]
  6. Maatooq, G. T., et al. (2005). Maatooq, G. T., et al, Phytochemistry 66, 1007 (2005) . Phytochem..