| Record Information |
|---|
| Version | 2.0 |
|---|
| Created at | 2021-06-19 22:18:33 UTC |
|---|
| Updated at | 2021-06-29 23:59:33 UTC |
|---|
| NP-MRD ID | NP0031144 |
|---|
| Secondary Accession Numbers | None |
|---|
| Natural Product Identification |
|---|
| Common Name | epiafzelechin |
|---|
| Provided By | JEOL Database |
|---|
| Description | (-)-Epiafzelechin belongs to the class of organic compounds known as flavan-3-ols. These are flavans that bear and hydroxyl group at position 3 (B ring), but not at position 4. Thus, (-)-epiafzelechin is considered to be a flavonoid (-)-Epiafzelechin is found, on average, in the highest concentration within a few different foods, such as teas (Camellia sinensis), red tea, and herbal tea and in a lower concentration in green tea and black tea (-)-Epiafzelechin has also been detected, but not quantified in, several different foods, such as mexican oreganos (Lippia graveolens), vaccinium (blueberry, cranberry, huckleberry), italian oreganos (Origanum X majoricum), butternuts (Juglans cinerea), and corns (Zea mays). This could make (-)-epiafzelechin a potential biomarker for the consumption of these foods (-)-Epiafzelechin is a primary metabolite. Primary metabolites are metabolically or physiologically essential metabolites. They are directly involved in an organism’s growth, development or reproduction. epiafzelechin is found in Acacia catechu , Actinidia chinensis , Afzelia sp., Aiouea hammeliana, Artocarpus dadah, Artocarpus fretessi Hassk, Artocarpus reticulatus Miq, Bauhinia racemosa, Bergenia ligulata , Camellia sinensis , Cassia abbreviata , Cassia fistula , Cassia javanica , Cassia roxburghii, Cassia sieberiana, Cassia spp., Cassipourea gummiflua, Celastrus orbiculatus, Cochlospermum gillivraei, Crateva religiosa, Desmoncus polyacanthos , Desmoncus polycanthus, Dicranopteris pedata, Ephedra sinica , Ephedra sp., Eucalyptus calophylla, Eysenhardtia subcoriacea Pennell, Ficus cordata, Ginkgo biloba , Juniperus communis , Kandelia candel, Larix gmelinii, Larix sibirica, Nothofagus fusca, Paraburkholderia phymatum, Pelargonium reniforme, Phyllanthus emblica, Pinalia floribunda, Prunus persica , Saxifraga ligulata, Senegalia catechu, Taxus chinensis, Tsuga chinensis, Typha capensis, Typha capensis (Rohrb.) N. E. Br , Wisteria floribunda, Xanthoceras sorbifolia and Ziziphus jujuba. epiafzelechin was first documented in 2011 (PMID: 21070009). Based on a literature review a small amount of articles have been published on (-)-Epiafzelechin (PMID: 34271878) (PMID: 34068829) (PMID: 33922460) (PMID: 33842675). |
|---|
| Structure | [H]OC1=C([H])C([H])=C(C([H])=C1[H])[C@@]1([H])OC2=C(C(O[H])=C([H])C(O[H])=C2[H])C([H])([H])[C@@]1([H])O[H] InChI=1S/C15H14O5/c16-9-3-1-8(2-4-9)15-13(19)7-11-12(18)5-10(17)6-14(11)20-15/h1-6,13,15-19H,7H2/t13-,15-/m1/s1 |
|---|
| Synonyms | | Value | Source |
|---|
| (2R,3R)-Epiafzelechin | ChEBI | | Epi-afzelechin | ChEBI | | Epiafzelechin | HMDB |
|
|---|
| Chemical Formula | C15H14O5 |
|---|
| Average Mass | 274.2687 Da |
|---|
| Monoisotopic Mass | 274.08412 Da |
|---|
| IUPAC Name | (2R,3R)-2-(4-hydroxyphenyl)-3,4-dihydro-2H-1-benzopyran-3,5,7-triol |
|---|
| Traditional Name | epiafzelechin |
|---|
| CAS Registry Number | Not Available |
|---|
| SMILES | [H]OC1=C([H])C([H])=C(C([H])=C1[H])[C@@]1([H])OC2=C(C(O[H])=C([H])C(O[H])=C2[H])C([H])([H])[C@@]1([H])O[H] |
|---|
| InChI Identifier | InChI=1S/C15H14O5/c16-9-3-1-8(2-4-9)15-13(19)7-11-12(18)5-10(17)6-14(11)20-15/h1-6,13,15-19H,7H2/t13-,15-/m1/s1 |
|---|
| InChI Key | RSYUFYQTACJFML-UKRRQHHQSA-N |
|---|
| Experimental Spectra |
|---|
|
| | Spectrum Type | Description | Depositor Email | Depositor Organization | Depositor | Deposition Date | View |
|---|
| 1D NMR | 13C NMR Spectrum (1D, 400 MHz, acetone-d6 at 303K, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 400 MHz, acetone-d6 at 303K, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 100 MHz, acetone-d6 at 303K, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 100 MHz, acetone-d6 at 303K, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 200 MHz, acetone-d6 at 303K, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 200 MHz, acetone-d6 at 303K, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 300 MHz, acetone-d6 at 303K, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 300 MHz, acetone-d6 at 303K, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 500 MHz, acetone-d6 at 303K, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 500 MHz, acetone-d6 at 303K, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 600 MHz, acetone-d6 at 303K, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 600 MHz, acetone-d6 at 303K, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 700 MHz, acetone-d6 at 303K, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 700 MHz, acetone-d6 at 303K, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 800 MHz, acetone-d6 at 303K, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 800 MHz, acetone-d6 at 303K, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 900 MHz, acetone-d6 at 303K, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 900 MHz, acetone-d6 at 303K, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 1000 MHz, acetone-d6 at 303K, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 1000 MHz, acetone-d6 at 303K, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum |
| | Predicted Spectra |
|---|
|
| Not Available | | Chemical Shift Submissions |
|---|
|
| Not Available | | Species |
|---|
| Species of Origin | |
|---|
| Chemical Taxonomy |
|---|
| Description | Belongs to the class of organic compounds known as flavan-3-ols. These are flavans that bear and hydroxyl group at position 3 (B ring), but not at position 4. |
|---|
| Kingdom | Organic compounds |
|---|
| Super Class | Phenylpropanoids and polyketides |
|---|
| Class | Flavonoids |
|---|
| Sub Class | Flavans |
|---|
| Direct Parent | Flavan-3-ols |
|---|
| Alternative Parents | |
|---|
| Substituents | - 3-hydroxyflavonoid
- 4'-hydroxyflavonoid
- 5-hydroxyflavonoid
- 7-hydroxyflavonoid
- Flavan-3-ol
- Hydroxyflavonoid
- 1-benzopyran
- Chromane
- Benzopyran
- 1-hydroxy-4-unsubstituted benzenoid
- 1-hydroxy-2-unsubstituted benzenoid
- Alkyl aryl ether
- Phenol
- Benzenoid
- Monocyclic benzene moiety
- Secondary alcohol
- Polyol
- Organoheterocyclic compound
- Oxacycle
- Ether
- Hydrocarbon derivative
- Organic oxygen compound
- Alcohol
- Organooxygen compound
- Aromatic heteropolycyclic compound
|
|---|
| Molecular Framework | Aromatic heteropolycyclic compounds |
|---|
| External Descriptors | |
|---|
| Physical Properties |
|---|
| State | Not Available |
|---|
| Experimental Properties | | Property | Value | Reference |
|---|
| Melting Point | Not Available | Not Available | | Boiling Point | Not Available | Not Available | | Water Solubility | Not Available | Not Available | | LogP | Not Available | Not Available |
|
|---|
| Predicted Properties | |
|---|
| General References | - Kpegba K, Agbonon A, Petrovic AG, Amouzou E, Gbeassor M, Proni G, Nesnas N: Epiafzelechin from the root bark of Cassia sieberiana: detection by DART mass spectrometry, spectroscopic characterization, and antioxidant properties. J Nat Prod. 2011 Mar 25;74(3):455-9. doi: 10.1021/np100090e. Epub 2010 Nov 11. [PubMed:21070009 ]
- Wang X, Yan M, Zhou J, Song W, Xiao Y, Cui C, Gao W, Ke F, Zhu J, Gu Z, Hou R: Delivery of acetamiprid to tea leaves enabled by porous silica nanoparticles: efficiency, distribution and metabolism of acetamiprid in tea plants. BMC Plant Biol. 2021 Jul 16;21(1):337. doi: 10.1186/s12870-021-03120-4. [PubMed:34271878 ]
- Zheng Y, Yang XW, Schols D, Mori M, Botta B, Chevigne A, Mulinge M, Steinmetz A, Schmit JC, Seguin-Devaux C: Active Components from Cassia abbreviata Prevent HIV-1 Entry by Distinct Mechanisms of Action. Int J Mol Sci. 2021 May 10;22(9). pii: ijms22095052. doi: 10.3390/ijms22095052. [PubMed:34068829 ]
- Yang X, He Z, Zheng Y, Wang N, Mulinge M, Schmit JC, Steinmetz A, Seguin-Devaux C: Chemical Constituents of Cassia abbreviata and Their Anti-HIV-1 Activity. Molecules. 2021 Apr 23;26(9). pii: molecules26092455. doi: 10.3390/molecules26092455. [PubMed:33922460 ]
- Dey D, Dey N, Ghosh S, Chandrasekaran N, Mukherjee A, Thomas J: Potential combination therapy using twenty phytochemicals from twenty plants to prevent SARS- CoV-2 infection: An in silico Approach. Virusdisease. 2021 Apr 5:1-9. doi: 10.1007/s13337-021-00658-7. [PubMed:33842675 ]
- Davis, A. L., et al. (1996). Davis, A. L., et al, Magn. Reson. Chem. 34, 887 (1996). Mag. Reson. Chem..
|
|---|